导航:首页 > 网络数据 > 舍恩伯格大数据时代

舍恩伯格大数据时代

发布时间:2023-08-14 05:06:10

『壹』 读书 | 大数据时代资本主义的重塑(No.22)

听书笔记

《大数据时代资本主义的重塑》的作者是维克托·舍恩伯格和托马斯·拉姆什。第一作者维克托·舍恩伯格是大数据领域的重量级人物。他在2012年出版的一本书《大数据时代》至今依然畅销,也是国内外研究大数据的人的必读书目。《大数据时代资本主义的重塑》是2018年2月刚出的一本新书,它从一个很独特的角度,为我们揭示了大数据会给人类社会带来怎样颠覆性的变化,甚至将彻底终结我们今天使用的金钱。

一、市场转向——从一个以价格为核心的市场转变为以数据为中心的市场

价格的三大作用

价格给市场提供了一套标准语言。

价格可以传递信息。

价格可以记录某个商品价值的波动情况。

以价格为核心的市场存在巨大缺陷

信息的损耗:信息压缩在价格这个唯一标尺里,造成信息传递的不全面。

“唯价格论”价值观:一切都向钱看,产品的质量性能反而退居第二位。

以数据为中心的市场是未来社会不可逆的转向。

但是,这个以数据为核心的市场交易需要一套完备的数据分析方法,我们概括为三个关键词就是:分类、偏好、配对。

分类:我们需要有一套分析、比较个人偏好的标准化的分类语言。

偏好:我们现在需要一种能有效地抓取、收集、记录人们的偏好数据。

配对:我们需要有更优化的、更精准的配对能力,以便让我们精确地找到合适的合作伙伴/卖家/买家。

二、资本转向——金融资本将被数据资本所取代

数据——大数据时代的黄金石油

在大数据的时代,资本、财富将不再以金钱为主要形式,而是体现为数据。此外,相比于自然资源,数据资源可以反复利用,取之不尽,用之不竭。

未来数据的关注点:应从收集层转向使用层。如何使用数据?

数据将发挥今天金钱才有的支付功能

用数据交税

当前数据资本的现状:被少数公司垄断

危害:

会有听命于商业老大哥的独裁统治的风险

容易造成系统性风险:一旦有居心不良的人在其中动手脚,整个数据市场都会陷入瘫痪

对策:

数据双向分享机制

数据税

目的:

让政府可以据此提供更好的公共服务

打破少数公司对数据市场的垄断,不至于出现一家独大的局面

三、公司、企业面临转型

公司、企业的定义及特点

公司、企业是拥有共同目标的一群人聚合起来的一个实体,是一个控制严密、权利集中、垂直整合的组织,特点是中心化。

在大数据时代,公司如何利用数据等手段来辅助自己做出更好的决策?

方式一,建立决策辅助机制——“机器+公司”模式

对于公司的未来,一种转型思路是“机器+公司”模式,让机器辅助公司进行决策。

当前,人们被期待拥有的技能,舍恩伯格教授称之为“T”形技能(T-shaped skill)。未来机器在公司内部普及后,“T”的一竖也就是某个专业领域的技能已经可以被机器完全取代,而人自己只需做“T”的一横上的事。

“T”形技能定义:

“T”的一横是和其他多个部门沟通、交流、协作的能力,这是一种宏观层面上的能力;

“T”的一竖是对某个领域深入的、专业的知识,属于比较微观的能力。

让机器辅助公司进行决策结果:

大程度地削弱人在做决策时的偏见。

“T”形技能也许会向“一”型技能转变。也就是说,大数据时代更看中人的沟通、交流能力。

方式二,建立高效的人才市场——“公司+市场”模式

运作方式:人才共享

管理者们不再持有人才,人才成了这个市场上的商品。人才不再是某个公司静态的附属品,可以自由在各个公司流通。

这是一种公司与市场相结合的运作模式,“公司+市场”是未来公司发展的前景之一。

作者的创见性预测:

随着机器能干的事情越来越多,再往后,许多大型的公司会变成只是法律名义上的法人实体,但不再大量雇佣员工,活生生变成一个空壳。

四、人的因素

在大数据时代这一去金钱化的资本主义社会中的人:

工作岗位的锐减,失业率的上升

人的智慧、想象力,以及沟通能力是机械化的事物无法取代。

『贰』 维克托迈尔舍恩伯格《大数据时代》读后感

当仔细品读一部作品后,大家一定都收获不少,是时候写一篇读后感好好记录一下了。千万不能认为读后感随便应付就可以,以下是我帮大家整理的维克托迈尔舍恩伯格《大数据时代》读后感范文,仅供参考,希望能够帮助到大家。

维克托迈尔舍恩伯格《大数据时代》读后感 篇1

对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获,此书有如下特点。

首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

作者认为大数据时代具有三个显著特点。

一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。

二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。

三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

维克托迈尔舍恩伯格《大数据时代》读后感 篇2

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。

他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于第一个观点,我不敢苟同。

一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的.方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

维克托迈尔舍恩伯格《大数据时代》读后感 篇3

读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。

其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

『叁』 谁最早提出大数据的概念

“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指对所有数据进行整体分析处理,而不是采用随机分析法,即抽样调查进行分析。 大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 大数据 (Big Data)又称为巨量资料,具体指要更新新处理模式才能保证拥有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 “大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指对所有数据进行整体分析处理,而不是采用随机分析法,即抽样调查进行分析。
大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

『肆』 大数据概念是在哪一年由谁首次提出的

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。


于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

资料参考网络大数据

『伍』 大数据一词最早出现于20世纪90年代

“大数据”一词,最早出现于20世纪90年代,当时的数据仓库之父比尔·恩门经常提及BigData。

『陆』 《大数据时代生活、工作与思维的大变革》epub下载在线阅读全文,求百度网盘云资源

《大数据时代》([英] 维克托•迈尔•舍恩伯格(Viktor Mayer-Schönberger))电子书网盘下载免费在线阅读

链接: https://pan..com/s/14EqWS8hUg7X4suhVQi7g8A 提取码: jh5h

书名:大数据时代

作者:[英] 维克托•迈尔•舍恩伯格(Viktor Mayer-Schönberger)

译者:周涛

豆瓣评分:7.5

出版社:浙江人民出版社

出版年份:2012-12

页数:261

内容简介:

《大数据时代》是国外大数据研究的先河之作,本书作者维克托•迈尔•舍恩伯格被誉为“大数据商业应用第一人”,拥有在哈佛大学、牛津大学、耶鲁大学和新加坡国立大学等多个互联网研究重镇任教的经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。

作者简介:

他是十余年潜心研究数据科学的技术权威,他是最早洞见大数据时代发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。他曾先后任教于世界最著名的几大互联网研究学府。现任牛津大学网络学院互联网治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人,哈佛国家电子商务研究中网络监管项目负责人;曾任新加坡国立大学李光耀学院信息与创新策略研究中心主任。并担任耶鲁大学、芝加哥大学、弗吉尼亚大学、圣地亚哥大学、维也纳大学的客座教授。

『柒』 《大数据时代》读后感

认真读完一本著作后,相信大家的视野一定开拓了不少,为此需要认真地写一写读后感了。怎样写读后感才能避免写成“流水账”呢?下面是我收集整理的关于《大数据时代》读后感范文(通用5篇),仅供参考,希望能够帮助到大家。

《大数据时代》读后感1

对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。

首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

作者认为大数据时代具有三个显著特点。

一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。

二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。

三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。

一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。

二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。

三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

《大数据时代》读后感2

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧———巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查网络,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?

3、大数据带来的`影响

当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?

1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

《大数据时代》读后感3

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

《大数据时代》读后感4

读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。

其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

《大数据时代》读后感5

首先,想谈一谈何为大数据,何为大数据时代。大数据是一种资源,也是一种工具。它提供一种新的思维方式去理解当今这个信息化世界。为何说是一种新的思维方式:在信息缺乏的时代或模拟时代,我们更倾向于精确性的思维方式,就像是"钉是钉,铆是铆",而在这种传统的思维方式下,我们得到问题的答案只有一个。

而在大数据时代下,我们打破了这种思维方式,换句话说,我们接受结果的不确定性。简言概括之,我认为大数据是一种预测模型。在大数据时代下,我们关注的不是因果,即为什么是这样,而更关心"是什么"这种相关关系。换句话说,在这种新思维的思考方式下,我们探究问题背后的原因也是不可行的。我们所做的是利用大数据这种工具,让数据自己说话!

其次,我想谈下如何利用大数据提升我军战斗力。当然,大数据分析并不是精准的预测,精准的预测也是不存在的。大数据只能有利于我们理解现在和预测未来的可能性。

作为军人,我所关注的是如何利用好大数据的工具提升我军战斗力,打赢这场信息化战争。毫无疑问,现在我们打的不是刀对刀,枪对枪的战争,更不是模拟时代,当代乃是数字时代,打的是信息化战争!

四次战争的大胜,美军的战争形态从机械化转向信息化,而且相应的在战场取胜的时间也越来越短,这正是大数据时代下的必然结果。而我军正在转向信息化的过程中。在此战争形态的过程中,我们需要更多的计算分析师,大数据分析师,数学家等高等技术性人才来打赢这场信息化战争。这正是大数据时代下我们不得不有的基础。我军战斗力的提升迫在眉睫!

当然大数据是一把双刃剑,利用好了取胜也是得心应手,相反,利用不好会导致不可估量的损失。

毕竟,这只是一种预测模型,得不到精准的预测结果。我们更要让数据为我们所用,不要被庞大的数据库框住我们的思维。为适应时代的发展,在这个适者生存,弱肉强食的世界,大数据时代下的残酷竞争已经给我们敲响警钟,一场悄无声息的信息化战争已经打响!

『捌』 《大数据时代》01 什么是大数据

今天我们第一本解读的是《大数据时代》这本书。

大数据是这几年特别火的一个词,那究竟什么是大数据呢?

字面意思可以理解为大数据就是数量巨大的数据,而这些巨大的数据再结合云计算、人工智能、物联网等技术会对于我们的生活、工作都会带来翻天覆地的影响。

芝加哥大学商学院教授、麦肯锡公司创始人,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”

而我们今天所讲的这本《大数据时代》是国外大数据研究的先河之作,本书作者舍恩伯格被誉为“大数据商业应用第一人”。舍恩伯格在书中前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并用三个部分讲述了大数据时代的思维变革、商业变革和管理变革。对于身处于大数据时代额我们可谓是会产生异常极大的思维方式的变革。

舍恩伯格最具洞见之处在于,他明确指出,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。

下面我们就进入到《大数据时代》这本书中去吧。

首先来看第一个话题大数据的思维变革

大数据与三个重大的思维变革有关,而这三个转变是相互作用的。

一.不是随机样本,而是全体数据

解释一下就是分析事物相关的所有数据,而不是仅仅依靠分析少量的数据样本。

二是不是精确性,而是混杂性

就是要接受数据的纷繁复杂,而不再追求准确性。

三是不是因果关系,而是相关关系

即不再追求难以摸索的因果关系,转而关注事物的相关关系。

这三个在大数据时代思维变革的转变我们会在接下来节目中一一讲解。

今天我们这一节先讲解:不是随机样本,而是全体样本,这一思维的变革。

小数据时代的随机抽样

为什么这么说呢?在我们过去技术并不发达的时候,只能用少量数据来进行随机采样是最高效的方式,即利用最少的数据来获取更多的信息。

在19世纪时美国的人口普查中,因为数据的变化超过了当时的人口普查统计分析能力,有人提出到数据无比庞大时可以进行有目的的选择,具有选出代表性的样本是最恰当的方式,这就是随机抽样。并且还非常有见解的提出:采样分析的精确性是随着采样随机性的增加而大幅的提高与样本的数量增加关系并不大,也就是说,随机采样样本的随机性比数量的多少更为重要。

而在当时,政府确实也采用了随机调查的方式来对于经济和人口进行了200多次小规模的调查,除此之外,在商业领域也会采用随机调查的方式来抽取部分商品来检查商品的质量安全。

随机抽样取得了巨大的成功,成为了现代社会,现代测量领域的主心骨,但这只是一条捷径,是不可能收集和分析全部数据情况下的选择,他本身就有很多的缺陷。

随机抽样的缺陷

第一,它的成功依赖于采样的绝对随机性,但在实现中绝对的随机性是非常困难,一旦分析过程中存在任何“偏见”,分析结果就会相去甚远。

第二,随机采样不适宜用于考察此类别的情况,也就是说随机抽样,一旦继续细分错误率会大大增加,比如说你想调查大学生玩手机的情况,您采取的调查结果可能会有3%的误差,但如果又把这个调查结果根据性别地域、收入来进行细分,那结果就会变得更为不准确。

因此当人们想要了解更深层次的细分领域的情况,采用随机采样的方法显然是不可取的,在宏观领域起作用的方法,在微观领域上失去了作用,随机采样就像是模拟照片,打印再远看会是非常不错,但是一旦聚焦在某个点,就会变得模糊不清。

全部数据的采样方式

现在我们正在步入了大数据时代,我们需要一中新的数据采集模式----全数据模式,即样本等于总体。

我们这个时代收集数据,并不像过去那样困难,手机导航、社交网站、微博、微信这些随时随地或主动或被动的收集你所产生的信息,并且通过计算机就可以轻而易举地完成数据处理。

采取全部数据的采样方式,可以不用考虑随机抽样所考虑的随机性,并且在细分领域也会发挥极大的作用,一个很好的例子,就是日本国民体育运动相扑之中所产生的非法操控比赛结果。

相扑比赛和其他比赛有所不同的就是选手需要在15场比赛之中的大部分场次获得胜利,才能保持排名和收入。这样一来就会出现收益不对称的情况,比如说一个7胜7负的选手,遇到一个8胜6负的选手,比赛结果对于第一个选手会比对第二个选手更为重要。列维特和达根发现在这种情况下,需要赢的那个选手,最可能会赢,这是为什么呢?有没有可能是选手的求胜心呢?当然有可能,但并不是完全!有数据显示需要赢的选手,求胜心,也只能把胜率增加25%。并且对于数据进一步分析发现,选手如果帮助上一次失利的一方的话,当他们再次相遇时,对方会回报回来。

这种情况在相扑界是显而易见的,但若是随机抽样就无法发现这个情况。而大数据通过分析所有比赛,用极大的数据来捕捉到这个情况。

还有关于大数据应用的例子是:2009年,谷歌公司将5000万条美国最频繁的检索词条和美国疾控中心在2003年至2008年季节性流感传播实际数据进行比较,成功预测了甲型H1N1流感的出现。

现在2021年,利用大数据来预测新冠肺炎的发展情况,已经成为我们日常新闻报道的一部分了。

在大数据时代的到来,让我们可以利用技术,从不同角度更细致的观察和研究数据的方方面面,使我们的调查更为精准。

回顾一下我们这一节所讲的过去的调查是采用小部分的数据来进行抽样调查,这一方法有显著的缺点

首先是抽样分析依赖于采样的随机性,而一旦数据出现”偏见“,结果便会大相径庭

第二抽样分析也只适用于宏观分析,对于更加微观的调查结果并不理想。

如今的技术环境已经有了很大的改善,在大数据时代进行抽样分析就是在汽车时代骑马一样,我们要分析与事物相关的而所有数据,而不仅仅是少量的数据。

以上就是我们本期全部内容,下一期我会讲到大数据时代下思维变革的后两个思维变革。

我的节目首发平台是公众号“悦读深入思考”关注还有更多内容

『玖』 大数据时代读后感5篇600字

去年的"云计算"炒得热火朝天的,今年的"大数据"又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起"大数据"来了。于是乎,各企业的CIO也将热度纷纷转向关注"大数据"来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状,下面是我为大家带来的大数据时代 读后感 ,希望你喜欢。

大数据时代读后感1

舍恩伯格的《大数据时代》被人推崇为2012最佳书籍,今年安泰读书会的重头戏。虽然主讲人最后放了个香港大黄鸭般的鸽子,但现场讨论氛围依旧非常热烈——而且还是在没几个人读完的情况下,也就意味着——大数据对我们的影响,已经深入到生活的方方面面。

无处不在的大数据:各种云计算,谷歌的神通,亚马逊的推送,天涯人肉,微博万能等等等等,我们掌握了新的工具,也获取了以前从未有过的各种信息。大数据拉近了我们与现实的距离,“地球村”变成了“地球屋”,仿佛所有人所有事物都触手可及,而这些牛逼哄哄的互联网巨头就在客厅展示着世界的每一寸光景。

然而,事实真的是这样吗?首先,从应用角度出发,低廉的运算能力和存储空间,让以前的样本分析显得非常简陋——一些从全体数据挖掘出来,忽略精确而从大量数据的简单算法得出来的结论颠覆了常识。但个人觉得,这只是统计学的终极目标——并没有非常大的跨越,可能终结了回归分析,有效性验证等手段,但依旧还是统计。而革命性在于关注相关关系而非因果关系。现场讨论从神学角度挑战了因果关系的不可能——或者说人类用简单思考的逻辑来定义因果,以及用之前小数据演绎出大概率事件来推导因果,都是不正确的。真正的因果关系应该属于上帝的范畴,人类如果真的完全掌握之后,会统治整个宇宙。但我觉得,无需从神学观点来讨论,而可以借鉴量子力学对经典力学的颠覆——在原子层面上,经典力学会失效——那么在大数据层面上,普通的抽样调查直观反映会失效。而且从量子力学角度是很难推导经典力学的公式,那么从现在的惯有思维,也难以推导出大数据的因果关系。

大数据时代读后感2

书中虽只是阐述了大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并未提及会对我们 教育 教学产生什么影响,但在这样的大环境之中,我们同样可以获得启示,寻求大数据在教育工作中可实现的价值。

1.教师角度:从基于 经验 到基于数据的教学转型

“经验主义”是指形而上学的思想 方法 和工作作风,其特点是在观察和处理问题的时候,从狭隘的个人经验出发,不是采用联系、发展、全面的观点,而是采取鼓励、精致、片面的观点。在教学中,我们有时会凭借以往经验认定本节课学生的起点,从而制定教学目标、重难点以及教学过程。这往往忽略了上届学生和这届学生是有差异的,这班学生和另一班学生也是存在差异的,那如何准确把握学生的起点呢?我想可以借助前测数据,它可以为有效教学指明了方向。

如教学“复式统计表”时,前期查找资料的时候就发现早在一年级上册P96的时候学生就见过复式统计表,意让学生初步认识统计表,渗透统计思想。而二三年级的书中练习也多有涉及,就是这种复式统计表没有“表头”,生活中的复式统计表也很多。既然在以前练习时碰到这么多次复式统计表,学生对复式统计表到底认识多少呢?我们对157名学生进行这样的调查(如下图),第1题:像上表这样的统计表以前见过吗?见过约占65%,没见过约占35%,学生在练习中碰到过、生活中也经常看见,但还是约35%的学生回答自己没见过,说明学生平时在看这个复式统计表的时候就浮于表面,所以这节课我们重点应该让学生经历复式统计表的产生过程,加深学生对复式统计表的印象。第2题:上表中的16表示什么意思?能完整表达出二班身高在130~139厘米的学生有16人,约占41%;表达一半,如二班16人,或130~139厘米16人,约占22%,其他约占37%,真正能正确读懂复式统计表的学生一半不到,需要在课中进行读图方法的指导。而知道这个表叫做复式统计表的学生不到20%。

大数据时代读后感3

这一章节,利用马修莫里导航图的例子引出了大数据的实践方式,奇人莫里通过整理航海相关的边角数据,把整个大西洋按照经纬度划分了出来,并标注出了温度、风速和风向,从而发现了洋流,也为船员提供了有效的航海路线,这就是数据的价值体现了。书中也提到了,量化我们周围的一切,是数据化的核心,将文字变成数据、将方位变成数据,将沟通、情感变成数据,通过大数据,我们会意识到,世界在本质上是由信息构成的。

在工作中,这点也可以作为启发点,通过对数据的整理,或者说以某种方式采集到相关数据,将数据整理出有价值的信息后,不断的改善到工作流程、效率、服务方面,也是工作上的创新点。

笔者在书中提到了,数据的潜在价值,并提出了数据创新应用的方法,第一是数据的再利用,数据信息被采集用作特定分析后,在另一个领域或者角色立场下,或许会开发出新的有价值的信息;第二是数据的重组,将不同类别、类型的数据进行重组,产生一个新的数据集合出来,寻找其中的关联性;第三是数据的扩展,这就需要在记录数据的同时设计好他的可扩展性;第四是数据的折旧值,数据将会贬值,但是仍会有其潜在价值;第五是数据废气,即数据采集时的离散量、离散交互信号,举例是谷歌与微软的拼写检查;第六是开放数据,数据的开放将会有利于各行各业的使用,并促进全行业数据时代的发展。这其中又提到了数据估值的概念,在数据使用时价值才会体现出来,而不是在占有本身。

根据所提供价值的不同来源,分别出现三种大数据公司,基于数据本身(采集大量数据的公司)、基于技能(提取用户的需求,给出数据分析结果的公司)、基于思维(挖掘数据新的价值的公司)。

大数据时代读后感4

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典着作--舍恩佰格的《大数据时代》。维克托.迈尔--舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家"的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分"大数据时代的思维变革"中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

大数据时代读后感5

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出"不是因果关系,而是相关关系。"这一论断时,他在书中还说道:"在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道“是什么”时,我们就会继续向更深层次研究的因果关系,找出背后的“为什么”。"[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可"量化",大数据的定量分析有力地回答"是什么"这一问题,但仍然无法完全回答"为什么"。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节"掌控"中试图回答,但基本上属于老生常谈。我想,或许凯文.凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:"大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。"谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。



大数据时代读后感5篇600字相关 文章 :

★ 走进网络时代作文600字:互联网时代不应是“忽老”时代

阅读全文

与舍恩伯格大数据时代相关的资料

热点内容
iphone5越狱后开机花屏 浏览:875
linux虚拟机如何增加硬盘 浏览:936
临时文件夹修改路径 浏览:93
安卓手机数据如何恢复 浏览:142
java小论文 浏览:164
tilecutter工具 浏览:365
app资源库企业级app有哪些 浏览:400
直接在ftp中打开文件 浏览:595
华为手机出现联系人微信重复联系人 浏览:550
鑫融小额借款app 浏览:555
代还app有什么功能 浏览:291
重装系统覆盖原系统文件夹 浏览:937
win7系统文件加密码 浏览:660
手游英雄杀360安卓版 浏览:301
苹果更新以后数据网络怎么用不了 浏览:666
蓝牙怎么接收文件在哪里 浏览:230
win10移动热点5ghz 浏览:630
小米8备份的数据如何还原 浏览:167
尚观linux讲义 浏览:464
三毛设计教程 浏览:789

友情链接