㈠ 大数据的定义是什么
大数据首先是一个非常大的数据集,可以达到TB(万亿字节)甚至ZB(十万亿亿字节)。这里面的数据可能既有结构化的数据,也有半结构化和非结构化的数据,而且来自于不同的数据源。
结构化的数据是什么呢?对于接触过关系型数据库的小伙伴来说,应该一点都不陌生。对了,就是我们关系型数据库中的一张表,每行都具有相同的属性。如下面的一张表:
(子标签的次序和个数不一定完全一致)
那什么又是非结构化数据呢?这类数据没有预定义完整的数据结构,在我们日常工作生活中可能更多接触的就是这类数据,比如,图片、图像、音频、视频、办公文档等等。
知道了这三类结构的数据,我们再来看看大数据的数据源有哪些呢?归纳起来大致有五种数据源。
一是社交媒体平台。如有名气的Facebook、Twitter、YouTube和Instagram等。媒体是比较受欢迎的大数据来源之一,因为它提供了关于消费者偏好和变化趋势的宝贵依据。并且因为媒体是自我传播的,可以跨越物理和人口障碍,因此它是企业深入了解目标受众、得出模式和结论、增强决策能力的方式。
二是云平台。公有的、私有的和第三方的云平台。如今,越来越多的企业将数据转移到云上,超越了传统的数据源。云存储支持结构化和非结构化数据,并为业务提供实时信息和随需应变的依据。云计算的主要特性是灵活性和可伸缩性。由于大数据可以通过网络和服务器在公共或私有云上存储和获取,因此云是一种高效、经济的数据源。
三是Web资源。公共网络构成了广泛且易于访问的大数据,个人和公司都可以从网上或“互联网”上获得数据。此外,国内的大型购物网站,淘宝、京东、阿里巴巴,更是云集了海量的用户数据。
四是IoT(Internet of Things)物联网数据源。物联网目前正处于迅猛发展势头。有了物联网,我们不仅可以从电脑和智能手机获取数据,还可以从医疗设备、车辆流程、视频游戏、仪表、相机、家用电器等方面获取数据。这些都构成了大数据宝贵的数据来源。
五是来自于数据库的数据源。现今的企业都喜欢融合使用传统和现代数据库来获取相关的大数据。这些数据都是企业驱动业务利润的宝贵资源。常见的数据库有MS Access、DB2、Oracle、MySQL以及大数据的数据库Hbase、MongoDB等。
我们再来总结一下,什么样的数据就属于大数据呢?通常来大数据有4个特点,这就是业内人士常说的4V,volume容量、 variety多样性、velocity速度和veracity准确性。
㈡ 哪款大数据分析软件比较好
1、spss
是一款用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品;包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。操作简单,编程方便,数据接口。
2、tabelau
程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表;不需任何编程。
3、SAS
是一个模块化、集成化的大型应用软件系统;SAS提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程。
4、PythonPandas
正如它的网站所述,Pandas是一个开咐蔽友源的Python数据分析库,目前由专注于Python数据包开发的PyData开发团队继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。
5、Paxata
Paxata是少数几家专注于数据并拿清洗和预处理的组织之一,是一个易于使用的MSExcel类应用程序。它还提供了可视化的指导,可以轻松地将数据汇集在一起,查找并修复数据中衡槐混杂的噪音或缺失,以及在团队之间共享和重复使用数据项目。与本文中提到的其他工具一样,Paxata取消了编码或脚本,从而克服了处理数据所涉及的技术障碍。
㈢ mssql 想了解一下大数据性能
差距不大,但是对于列数量过大的就有影响了,主要是数据导出和处理时,前者要占用更大量内存和缓存,并且会有文件容量超出上限问题。
㈣ mssql大数据检索问题
我是来混分的
我的意见是
创建索引, 移除历史数据到备份表中
下面的内容来自别人总结的, 呵呵
1、1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3、3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4、4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。
ORACLE数据库性能优化工具
常用的数据库性能优化工具有:
1、1、ORACLE数据库在线数据字典,ORACLE在线数据字典能够反映出ORACLE动态运行情况,对于调整数据库性能是很有帮助的。
2、2、操作系统工具,例如UNIX操作系统的vmstat,iostat等命令可以查看到系统系统级内存和硬盘I/O的使用情况,这些工具对于管理员弄清出系统瓶颈出现在什么地方有时候很有用。
3、3、SQL语言跟踪工具(SQL TRACE FACILITY),SQL语言跟踪工具可以记录SQL语句的执行情况,管理员可以使用虚拟表来调整实例,使用SQL语句跟踪文件调整应用程序性能。SQL语言跟踪工具将结果输出成一个操作系统的文件,管理员可以使用TKPROF工具查看这些文件。
4、4、ORACLE Enterprise Manager(OEM),这是一个图形的用户管理界面,用户可以使用它方便地进行数据库管理而不必记住复杂的ORACLE数据库管理的命令。
5、5、EXPLAIN PLAN——SQL语言优化命令,使用这个命令可以帮助程序员写出高效的SQL语言。
ORACLE数据库的系统性能评估
信息系统的类型不同,需要关注的数据库参数也是不同的。数据库管理员需要根据自己的信息系统的类型着重考虑不同的数据库参数。
1、1、在线事务处理信息系统(OLTP),这种类型的信息系统一般需要有大量的Insert、Update操作,典型的系统包括民航机票发售系统、银行储蓄系统等。OLTP系统需要保证数据库的并发性、可靠性和最终用户的速度,这类系统使用的ORACLE数据库需要主要考虑下述参数:
l l 数据库回滚段是否足够?
l l 是否需要建立ORACLE数据库索引、聚集、散列?
l l 系统全局区(SGA)大小是否足够?
l l SQL语句是否高效?
2、2、数据仓库系统(Data Warehousing),这种信息系统的主要任务是从ORACLE的海量数据中进行查询,得到数据之间的某些规律。数据库管理员需要为这种类型的ORACLE数据库着重考虑下述参数:
l l 是否采用B*-索引或者bitmap索引?
l l 是否采用并行SQL查询以提高查询效率?
l l 是否采用PL/SQL函数编写存储过程?
l l 有必要的话,需要建立并行数据库提高数据库的查询效率
SQL语句的调整原则
SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率是很不相同的。程序员可以使用EXPLAIN PLAN语句来比较各种实现方案,并选出最优的实现方案。总得来讲,程序员写SQL语句需要满足考虑如下规则:
1、1、尽量使用索引。试比较下面两条SQL语句:
语句A:SELECT dname, deptno FROM dept WHERE deptno NOT IN
(SELECT deptno FROM emp);
语句B:SELECT dname, deptno FROM dept WHERE NOT EXISTS
(SELECT deptno FROM emp WHERE dept.deptno = emp.deptno);
这两条查询语句实现的结果是相同的,但是执行语句A的时候,ORACLE会对整个emp表进行扫描,没有使用建立在emp表上的deptno索引,执行语句B的时候,由于在子查询中使用了联合查询,ORACLE只是对emp表进行的部分数据扫描,并利用了deptno列的索引,所以语句B的效率要比语句A的效率高一些。
2、2、选择联合查询的联合次序。考虑下面的例子:
SELECT stuff FROM taba a, tabb b, tabc c
WHERE a.acol between :alow and :ahigh
AND b.bcol between :blow and :bhigh
AND c.ccol between :clow and :chigh
AND a.key1 = b.key1
AMD a.key2 = c.key2;
这个SQL例子中,程序员首先需要选择要查询的主表,因为主表要进行整个表数据的扫描,所以主表应该数据量最小,所以例子中表A的acol列的范围应该比表B和表C相应列的范围小。
3、3、在子查询中慎重使用IN或者NOT IN语句,使用where (NOT) exists的效果要好的多。
4、4、慎重使用视图的联合查询,尤其是比较复杂的视图之间的联合查询。一般对视图的查询最好都分解为对数据表的直接查询效果要好一些。
5、5、可以在参数文件中设置SHARED_POOL_RESERVED_SIZE参数,这个参数在SGA共享池中保留一个连续的内存空间,连续的内存空间有益于存放大的SQL程序包。
6、6、ORACLE公司提供的DBMS_SHARED_POOL程序可以帮助程序员将某些经常使用的存储过程“钉”在SQL区中而不被换出内存,程序员对于经常使用并且占用内存很多的存储过程“钉”到内存中有利于提高最终用户的响应时间。
CPU参数的调整
CPU是服务器的一项重要资源,服务器良好的工作状态是在工作高峰时CPU的使用率在90%以上。如果空闲时间CPU使用率就在90%以上,说明服务器缺乏CPU资源,如果工作高峰时CPU使用率仍然很低,说明服务器CPU资源还比较富余。
使用操作相同命令可以看到CPU的使用情况,一般UNIX操作系统的服务器,可以使用sar –u命令查看CPU的使用率,NT操作系统的服务器,可以使用NT的性能管理器来查看CPU的使用率。
数据库管理员可以通过查看v$sysstat数据字典中“CPU used by this session”统计项得知ORACLE数据库使用的CPU时间,查看“OS User level CPU time”统计项得知操作系统用户态下的CPU时间,查看“OS System call CPU time”统计项得知操作系统系统态下的CPU时间,操作系统总的CPU时间就是用户态和系统态时间之和,如果ORACLE数据库使用的CPU时间占操作系统总的CPU时间90%以上,说明服务器CPU基本上被ORACLE数据库使用着,这是合理,反之,说明服务器CPU被其它程序占用过多,ORACLE数据库无法得到更多的CPU时间。
数据库管理员还可以通过查看v$sesstat数据字典来获得当前连接ORACLE数据库各个会话占用的CPU时间,从而得知什么会话耗用服务器CPU比较多。
出现CPU资源不足的情况是很多的:SQL语句的重解析、低效率的SQL语句、锁冲突都会引起CPU资源不足。
1、数据库管理员可以执行下述语句来查看SQL语句的解析情况:
SELECT * FROM V$SYSSTAT
WHERE NAME IN
('parse time cpu', 'parse time elapsed', 'parse count (hard)');
这里parse time cpu是系统服务时间,parse time elapsed是响应时间,用户等待时间
waite time = parse time elapsed – parse time cpu
由此可以得到用户SQL语句平均解析等待时间=waite time / parse count。这个平均等待时间应该接近于0,如果平均解析等待时间过长,数据库管理员可以通过下述语句
SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS FROM V$SQLAREA
ORDER BY PARSE_CALLS;
来发现是什么SQL语句解析效率比较低。程序员可以优化这些语句,或者增加ORACLE参数SESSION_CACHED_CURSORS的值。
2、数据库管理员还可以通过下述语句:
SELECT BUFFER_GETS, EXECUTIONS, SQL_TEXT FROM V$SQLAREA;
查看低效率的SQL语句,优化这些语句也有助于提高CPU的利用率。
3、3、数据库管理员可以通过v$system_event数据字典中的“latch free”统计项查看ORACLE数据库的冲突情况,如果没有冲突的话,latch free查询出来没有结果。如果冲突太大的话,数据库管理员可以降低spin_count参数值,来消除高的CPU使用率。
内存参数的调整
内存参数的调整主要是指ORACLE数据库的系统全局区(SGA)的调整。SGA主要由三部分构成:共享池、数据缓冲区、日志缓冲区。
1、 1、 共享池由两部分构成:共享SQL区和数据字典缓冲区,共享SQL区是存放用户SQL命令的区域,数据字典缓冲区存放数据库运行的动态信息。数据库管理员通过执行下述语句:
select (sum(pins - reloads)) / sum(pins) "Lib Cache" from v$librarycache;
来查看共享SQL区的使用率。这个使用率应该在90%以上,否则需要增加共享池的大小。数据库管理员还可以执行下述语句:
select (sum(gets - getmisses - usage - fixed)) / sum(gets) "Row Cache" from v$rowcache;
查看数据字典缓冲区的使用率,这个使用率也应该在90%以上,否则需要增加共享池的大小。
2、 2、 数据缓冲区。数据库管理员可以通过下述语句:
SELECT name, value FROM v$sysstat WHERE name IN ('db block gets', 'consistent gets','physical reads');
来查看数据库数据缓冲区的使用情况。查询出来的结果可以计算出来数据缓冲区的使用命中率=1 - ( physical reads / (db block gets + consistent gets) )。
这个命中率应该在90%以上,否则需要增加数据缓冲区的大小。
3、 3、 日志缓冲区。数据库管理员可以通过执行下述语句:
select name,value from v$sysstat where name in ('redo entries','redo log space requests');查看日志缓冲区的使用情况。查询出的结果可以计算出日志缓冲区的申请失败率:
申请失败率=requests/entries,申请失败率应该接近于0,否则说明日志缓冲区开设太小,需要增加ORACLE数据库的日志缓冲区。