导航:首页 > 网络数据 > 大数据在医学中的应用

大数据在医学中的应用

发布时间:2023-08-12 13:21:18

大数据在医疗行业的应用有哪些

大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。

㈡ 大数据技术应用在医疗行业的哪些方面

【导读】大数据技术可以说目前已经应用到了各行各业中,对于各行各业都是有很大的帮助和促进作用的,在医疗行业,能够促进医学研究,帮助改善我们的生活质量,有效促进相关疾病的治疗等等,那么大数据技术应用在医疗行业的哪些方面呢?下面我们就来一起了解一下。

1、新型冠状病毒大数据搜索报告

该数据有可能更好地预测各种情况和当前公共卫生问题引起的区域性暴发疫情的情况。反过来,医疗服务提供者能够采取适当的预防措施,并分配必要的资源,以应对与健康有关的特定疾病的区域性升级

2、区域医疗保健监控

可以将数据用于预测医学研究,从而有助于预防可能的疾病传播。例如,通过跟踪他们搜索的医疗问题来了解患者人群及其医疗保健需求以及跟踪他们在医疗站点上提供的信息,这些都是促进预防保健和研究的方法。

3、打击性传播疾病

如果及时报告,则可以治疗性传播疾病(STD)和性传播感染(STI)。但是,诸如缺乏性教育等问题通常会导致症状不受控制。大数据可以利用本地经验,并帮助科技公司和医疗保健提供商填补信息空白并传播对性健康的认识。

4、机器人护士

如今,在医学研究和发展中使用大数据至关重要。人工智能和机器学习正在引领医学数据的收集,新药疗法的发现以及患者预后的改善。通过实时分析公共卫生问题,大数据可以促进多个领域的医学研究,改善患者护理并防止致命疾病的传播。

5、改善医疗保健支持系统

医疗技术的主要进步之一是医疗保健机器人技术,预计到2021年其收入将增长到28亿美元。医疗保健机器人技术包括外科机器人培训,机器人护士,智能假肢和仿生学等专业,以及治疗,药丸,远程呈现和后勤方面的帮助。使用大数据驱动的机器人技术有可能极大地改善医疗保健支持的质量,这已经通过少数著名的机器人护士(如Robot
Dinsow)看到,它可以监控患者并提醒他们用药;Paro机器人可以提醒护理人员。

关于大数据技术在医疗行业应用,就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于大数据工程师相关内容,可以点击本站的其他文章进行学习。

㈢ 医疗大数据有什么作用

医疗大数据,就是通过医疗的大数据进行数据分析,可以进行医疗方面的比较和研究。
通全面析病特征数据疗效数据比较种干预措施效性找针特定病佳治疗途径。

㈣ 大数据医疗行业的5大应用

一、电子病历


到目前为止,大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。


这些记录通过安全的信息系统(究竟是否安全值得商榷)在不同的医疗机构之间共享。每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。


二、健康监控


医疗业的另一个创新是“可穿戴设备”的应用,这些设备能够实时汇报病人的健康状况。


和医院内部分析医疗数据的软件类似,这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。这些可穿戴设备持续不断地收集健康数据并存储在云端。


三、医护资源配置


这个看似不可能完成的任务,已经在大数据的帮助帮助下在一些“试点”单位实现。在法国巴黎,有四家医院通过多个来源的数据预测每家医院每天和每小时的患者数量。


他们采用一种被称为“时间序列分析”的技术,分析过去10年的患者入院记录。这项研究能够帮助研究人员发现患者入院的规律并利用机器学习,找到能够预测未来入院规律的算法。


四、大数据与人工智能


人工智能技术通过算法和软件,分析复杂的医疗数据,达到近似人类认知的目的。因此AI使得计算机算法能够在没有直接人为输入的情况下预估结论成为可能。由AI支持的脑机接口可以帮助恢复基本的人类体验,例如因神经系统疾病和神经系统创伤而丧失的说话和沟通功能。


五、医学影像


医学影像包括X射线、核磁共振成像、超声波等,这些都是医疗过程中的关键环节。


放射科医生往往需要单独查看每一个检查结果,不但产生了巨大的工作量,同时也有可能耽误患者的最佳治疗时间。但是大数据却可以有效解决这一问题。


关于大数据医疗行业的5大应用的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈤ 健康医疗大数据的安全与应用

健康医疗大数据的安全与应用
医疗健康大数据是覆盖自然人的全生命周期,既包括个人健康,又涉及医药服务、疾病防控、健康保障和食品安全、养生保健等多方面数据的汇聚和聚合。
简单讲就是涉及到健康的、医疗的跟个人相关的数据的合集,不仅在医院,在互联网,在企业、医院都存在。
同时会议上也提到要利用健康医疗大数据,创新业态,创新应用,促进医疗行业发展。
利用健康医疗大数据,不仅对改进健康医疗服务模式,而且对经济社会发展都有着重要的促进作用,是国家重要的基础性战略资源。
健康医疗数据从哪来?
我们可以大致分为五方面。
第一来自诊疗数据:
患者在医疗机构、体检机构等就医过程中产生并由信息系统记录的数据;
包括电子病历、检验检查、基因测序、用药、医学影像等;
第二来自研究数据:药品或器械研究机构,由研究机构录入或采集的个人健康数据,比如临床试验、生物样本库等;
第三是个人数据:个人在医疗机构外自行记录的健康数据,比如可穿戴设备采集的心率、脉搏、睡眠等数据;互联网行为记录的检索、问诊、查询、病患交流数据等;
第四是结算数据: 由商业保险公司、医保机构、物价管理机关存储的报销和流通数据;最后是公共医学:由临床指南、医疗健康期刊、医学文献,循证医学数据资源库等组成。这就是医疗大数据的来源。
健康医疗数据核心在医疗机构
因为医院的数据是真实的疾病数据,其他的社会药品采买数据等等跟真正核心医疗健康的核心还有些距离。
而在医院包括护理记录、电子病历、用药信息、疾病诊断等等,这些数据综合一个特点就是敏感度非常高。
第二就是真实,为什么真实?看病有医嘱、处方、病案等,这些医疗文书是可以作为法律证据的。
同时质量比较高,在医疗信息化20年时间的不断积累和持续改进,数据的完整度和质量也在不断地提高。
行业要求
医疗健康大数据据作为新生事物,在行业标准和行业规范上尚有欠缺。直至近一年,国家卫计委陆续出台的全国医院信息化"功能指引"和"建设标准和规范",其中提到大数据平台,就是希望医院须要建设大数据平台,执行国家十三五规划中大数据战略落地的内容和时间计划,要求三甲医院最终要建设面向大数据和人工智能技术的服务架构,高效高质组织数据资源,形成数据生产力。
行业现状
健康大医疗数据共享及应用不易。
针对于医院来说:客观存在"不敢、不愿、不会"三种形态。
不敢,因为数据共享、数据安全这些问题没有解决,所以不敢去做。
没有规定,或者不太明确,不敢做。不愿,因为医院权益、政府权益、社会权益,不清楚。还有医院内部科室的数据担心被拿走,不愿意。
不会,因为大数据必须要有大数据的技术支撑,没有技术支撑就没法儿对数据进行挖掘和利用,同样在数据共享开放过程中,技术、标准、机制、体制突破仍存在较大的障碍,造成各部门在推动过程当中不会做,这些现状造成了「不会」现象。
这些都是现状,但核心是数据安全和无法做到安全可控,让医院放心。
安全和隐私保护
数据安全挑战
数据安全没有解决,能不能用?怎么建立安全体系?
首先医院安全受到不断的挑战。
我在昨天看到一个新闻,我不知道大家看到没看到,就是新加坡的某医院集团,其医院数据被黑,包括他们总理在内的就诊数据都在里面,非常敏感。
黑客拿走了。
为什么大家盯到了医院?说明黑客对医疗数据还是感兴趣的。
比如勒索数据,过去病毒很少到医院,但去年勒索病毒刚爆发时就是针对医院,英国到中国都有中招,但是中国医院被曝光的很少。所以说安全形势比较严峻。
医院安全管理
第一是物理安全
医院的网络物理网是分内部网:挂号、结算、收费。一个是外网办公网,再往外才是英特网。
整个物理是隔离的,而且网络也是隔离的。
第二数据安全,主要是指医疗内部数据,数据保护采用了加密、数据库审计、防篡改等技术。
第三是网络安全,从网络角度讲,国家卫计委提出2015年全部三甲医院要建立信息安全三级等级保护,逐步实现了基本的安全。
第四隐私安全,这是新的命题,因为我们数据在内部用的话是不去隐私的明文。
那些是隐私数据?
国内还没明确法律规定细则。
我们可借鉴美国HIPPA法案,其明确规定了个人姓名、社保号、车牌号等18项隐私数据,或者说只要能指向患者个体的都算隐私。
那么数据如何去隐私?
现在通用的还是基本加密技术。
医院内部不需要加密,所谓外部就是科研研究、药物研究时需要大量统计分析时需要加密,我们现在用的是MD5加密等机密技术,有可逆的和不可逆的。
健康大数据应用
在安全前提下要放开应用。
借用国家卫计委规划信息司领导所言"一分部署、九分落地"。健康医疗大数据也需要一分建设,九分要应用。从产业应用现状看,公司多,投资多,期望大,产出还未确定。
从应用方向上,我们可以分为:临床决策支持(AI),医保控费和险种开发,医院管理,医疗器械和新药研发,慢病和健康管理等多个方向。

㈥ 大数据分析在疾病与健康研究方面的应用

大数据分析在疾病与健康研究方面的应用

大数据分析技术将在以上方面发挥着特殊的作用。

一、疾病与健康研究

在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。

1、健康研究

中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:
1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。

1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。

1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。

1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。

1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。

1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。

1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。

2、亚健康研究

世界卫生组织将机体无器质性病变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质性病变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。

对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:

2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。

2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。

2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。

2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。

2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。

3、疾病研究

中国面临的严重危害人民健康的疾病包括:

传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;

慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;

精神和心理疾病;

小儿出生缺陷。

对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:

3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。

3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。

3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。

3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。

3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。

3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。

3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。

二、环境与健康研究

环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。

应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:
1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。

2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。

3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。

4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。

5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。

6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。

7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。

三、医药生物技术与健康

生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。

以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:

1. 利用生物信息技术进行生物信息的存储与获取。

2. 利用生物信息技术开展基因的序列对比、测序和拼接。

3. 利用生物信息技术进开展基因预测。

4. 利用生物信息技术进行生物进化与系统发育分析。

5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。

6. 利用生物信息技术进行分子设计和药物设计。

7. 利用生物信息技术进行肿瘤分类及遗传学分析。

8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。

9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。

四、卫生宏观决策支持

卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。

以上是小编为大家分享的关于 大数据分析在疾病与健康研究方面的应用的相关内容,更多信息可以关注环球青藤分享更多干货

㈦ 医疗大数据五大应用透视

医疗大数据五大应用透视
医疗行业是较早运用大数据分析的传统行业之一。其中,五大医疗服务领域包括临床业务、网络平台、公众健康管理、远程病人监控、新药开发等,对大数据运用的深度和广度都走在了前面。大数据分析大幅度提高了医疗效果和用户满意度。
临床记录和医保大数据
汇总患者的临床记录和医疗保险数据集并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医学发展的速度。
世界各地的很多医疗机构(如英国的NICE、德国IQWIG、加拿大普通药品检查机构等)已经开始了CER项目并取得了初步成功。2009年,美国通过的复苏与再投资法案,就是向这个方向迈出的第一步。在这一法案下,设立的比较效果研究联邦协调委员会协调整个联邦政府的比较效果的研究,并对4亿美元投入资金进行分配。这一投入想要获得成功,还有大量潜在问题需要解决。比如临床数据和保险数据的一致性问题,当前在缺少EHR(电子健康档案)标准和互操作性的前提下,大范围仓促部署EHR可能造成不同数据集难以整合。再如病人隐私问题,想在保护病人隐私的前提下提供足够详细的数据以保证分析结果的有效性不是一件容易的事。还有一些体制问题,比如目前美国法律禁止医疗保险机构和医疗补助服务中心(Centers for Medicare and Medicaid Services)(医疗服务支付方)使用成本/效益比例来制定报销决策,因此,即便他们通过大数据分析找到更好的方法也很难落实。
网络平台和社区
另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据。比如PatientsLikeMe.com网站,病人可以在这个网站上分享治疗经验;Sermo.com网站,医生可以在这个网站上分享医疗见解;Participatorymedicine.org网站,这家非营利性组织运营的网站鼓励病人积极进行治疗。这些平台可以成为宝贵的数据来源。例如,Sermo.com向医药公司收费,允许他们访问会员信息和网上互动信息。
公众健康
大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询可以大幅提高公众健康风险意识,降低传染病感染风险。所有这些都将帮助人们创造更好的生活。
远程病人监控
从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。
2010年,美国有1.5亿慢性病如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪乃至芯片药片。芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。
新药开发
医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。

阅读全文

与大数据在医学中的应用相关的资料

热点内容
手机文件的后缀名 浏览:81
excel如何找到获取数据按钮 浏览:688
本电脑的所有共享文件夹在哪里 浏览:444
网络营销投资管理有哪些 浏览:665
手机java插件 浏览:598
mac编程文件为什么文件位置找不到 浏览:273
手术教程APP有哪些 浏览:488
10岁女孩qq名字可爱 浏览:496
微信转账中转专用帐户5 浏览:355
vb获取系统文件夹 浏览:345
iphone5越狱后开机花屏 浏览:875
linux虚拟机如何增加硬盘 浏览:936
临时文件夹修改路径 浏览:93
安卓手机数据如何恢复 浏览:142
java小论文 浏览:164
tilecutter工具 浏览:365
app资源库企业级app有哪些 浏览:400
直接在ftp中打开文件 浏览:595
华为手机出现联系人微信重复联系人 浏览:550
鑫融小额借款app 浏览:555

友情链接