⑴ 什么是大数据,大数据时代怎么理解
大数据的定义
大数据(Bigdata)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据的特点
数据量大、数据种类多、要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复陪答杂的,需要搜索、处理、分析、归纳、总结其深层次的规律。
大数据时代的影响
越来越多的政府、企业等机构开始意识到数据正在成为组织最重要的资产,数据分析能力正在成为组织的核心竞争力。如2012年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。联合国也在2012年发布了大数据政务白皮书,指出大数据对于联合国和各国政府来说是一个历史性的机遇,人们如今可以使用极为丰富的数据资源,来对社会经济进行前所未有的实时分析,帮助政府更好地响应社会和经济运行。
大数据的意义和前景
大数据是对大量、动态、能持芦游慧续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可磨配能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在大家面前。
大数据分析的目的
大数据分析的核心目的就是预测,在海量数据的基础上,通过机器学习相关的各种技术和数学建模来预测事情发生的可能性并采取相应措施。预测股价、预测机票价格、预测流感等等。
预测事情发生的可能性继续往下延伸,就可以通过适当的干预,来引导事情向着期望的方向发展。比如亚马逊和所有的电商一样,都会基于对用户的喜好及消费能力分析来推荐商品,引导用户提高消费金额;Google等互联网巨头也会通过各种技术手段来试图向不同的用户展现不同的广告,并称之为精准营销,由此来提高点击率(公司收入);网游公司也会在运营工程中通过玩家行为数据的分析来及时调整游戏关卡及计费点等设计。
⑵ 游戏中大数据模型是通过什么建立的
大型数据包,详情如
1、数据测量
数据测量包括ECU内部数据获取,车内总线数据获取以及模拟量数据获取,特别是对于新能源汽车电机、逆变器和整流器等设备频率高达100KHz的信号测量,ETAS提供完整的解决方案。
2、大数据管理与分析
目前的汽车嵌入式控制系统开发环境下,人们可以通过各种各样不同的途径(如真实物体、仿真环境、模拟计算等)获取描述目标系统行为和表现的海量数据。
正如前文所述,ETAS数据测量环节获取了大量的ECU内部以及模拟量数据,如何存储并有效地利用这些数据,并从中发掘出目标系统的潜力,用以指引进一步的研发过程,成为极其重要的课题。
3、虚拟车辆模型建模与校准
基于大数据管理与分析环节对测量数据进行的分析,我们得到了一些参数之间的相互影响关系,以及相关物理变量的特性曲线。如何将这些隐含在大量数据中的宝贵的知识和数据保存下来并为我们后续的系统仿真分析所用呢?
模型是一个比较好的保存方式,我们可以通过建立虚拟车辆及虚拟ECU模型库,为后续车辆及ECU的开发验证提供标准化的仿真模型。ETAS除提供相关车辆子系统模型,还提供基于数据的建模和参数校准等完整解决方案。
4、测试与验证(XiL)
在测试与验证环节,通常包含模型在环验证(MiL),软件在环验证(SiL),虚拟测试系统验证(VTS)以及硬件在环验证(HiL)四个阶段,ETAS提供COSYM实现在同一软件平台上开展四个环节仿真验证工作。
⑶ 怎样做一名游戏数据分析师
数据分析师,主要是两类人,一类是数据挖掘工程师,另一类是业务分内析师。前者更偏技术,容后者更偏业务。
成为一名合格的数据分析师需要作如下准备:
1、熟知行业与业务
2、理解业务中产生的数据
3、能提取数据
4、分析数据
5、解读数据
6、展示数据
主要还是商业敏感度,数据库及SQL水平,掌握数据分析工具及数据模型的能力,还有数据敏感度,和PPT能力
⑷ 大数据分析需要哪些工具_大数据的分析工具主要有哪些
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数梁睁银据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
Python
Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C)很轻松地联结在一起。
常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
R软件
R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的橡宴进行数据分析,甚至创造出符合需要的新的统计计算方法。
SPSS
SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。
Excel
可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
SAS软件
SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关早败回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。
⑸ 游戏行业的大数据分析管理
游戏行业的大数据分析管理
作为国内最大的网页游戏和智能手机游戏的研发、运营和发行商之一,人人游戏的大数据价值发现从结构化数据集起步,逐步向非结构化数据集延伸。
在骄阳似火的七月,人人游戏的“词云”应用火热上线了。所谓“词云”,就是先对人人游戏玩家的在线聊天记录进行分词,汇总之后对玩家行为进行分析和展现。目前,“词云”已经在人人游戏的四款重点游戏中安家落户,随后有关玩家情绪的分析功能(通过关键词对应玩家的情绪指数)也将上线。人人游戏运营平台总监、数据中心负责人王坤表示,“词云”应用的上线是人人游戏对大数据的利用从结构化数据集向非结构化数据集延展的重要一步。
成立于2006年的人人游戏正在努力转型为一家跨PC、平板电脑和手机终端的多平台游戏研发、运营和发行商。从2007年推出第一款网页游戏《猫游记》至今,人人游戏一步步向着这一目标靠近。在此过程中,人人游戏坚持在“跨屏”技术创新领域的研发投入,同时也积极利用大数据技术优化整体业务运营。
目前,王坤所领导的30余人的技术团队正致力于从包括游戏日志、玩家行为数据、日常经营数据等在内的大数据集中寻找更好的数据利用和展现途经,同时他们还是大数据应用在企业内部营销推广的主力军。“我们要做每个员工的大数据分析,而不仅仅是数据中心的大数据分析。要做好游戏行业的大数据分析,构建360°的用户视图非常重要。”她说。
从0°到360°
2009年,人人游戏对于业务数据的利用还停留在汇总游戏日志数据,仅用于简单分析的阶段。而在2013年,人人游戏已经基本上完成了基于IBMCognos的BI系统整体建设。同时,其基于Greenplum社区版的分布式数据仓库也已初具规模。对人人游戏而言,这些都是获得360°用户视图的必要工作。而360°用户视图为其业务运营和决策所带来的价值则是实实在在的。
“BI系统主要是管理结构化的大数据,我们搭建了报表、行动和洞察三位一体的闭环系统,而不仅仅是一个报表系统。”王坤说。新的BI系统将人人游戏的业务模型更加清晰地呈现出来,对游戏业务覆盖用户获取、客户存留、客户付费的核心流程进行了优化,能够更准确地为业务决策提供参考。在报表设计方面,王坤所带领的技术团队坚持遵循MECE(mutually-exclusive and collectively exhaustive,即相互排斥而又集体穷尽)的分析原则,确保每张报表都有清楚的存在意义。同时,BI系统上线后,企业在开发和运维方面的投入也有所降低。
“从结构化大数据到非结构化大数据,数据分析范围和深度的扩展,让我们能够更准确地把握玩家的行为和需求。”王坤说。以“词云”应用为例,“炸金矿”是人人游戏旗下“乱世天下”这款游戏中玩家参与度很高的一个玩法,玩家需要邀请一定数量的友人帮忙炸矿来赢取金币。但在节假日期间,这款游戏的参与度通常都会下降。“通过‘词云’分析后发现,节假日期间‘求炸’成为玩家的聊天热词。我们也因此得知,并不是玩家不爱玩这个游戏,而是玩家在节假日邀请不到足够数量的友人帮忙炸矿。基于这样的分析,我们可以在节假日期间对游戏规则进行调整。”王坤说。
大数据的行业价值
“每个行业都会有自己的大数据故事。在游戏行业,大数据分析可能不会直接带来电商网站那样真金白银的收入,但其价值同样会体现在精准营销、客户体验优化等多个层面。”王坤说。她指出,全面的大数据分析能够有效提升玩家的留存率和转化指标,并且为游戏产品的研发提供指引。而个性化的精准营销同样与大数据分析紧密相关,像是针对不同性别、不同年龄、不同地域人群的广告精准投放,背后都要依靠基于360°用户视图的玩家特征分析。
王坤坦言,对人人游戏乃至整个游戏行业来说,大数据的管理与分析仍然是一件“体力活”。“大数据团队所面临的最大挑战是数据的整合,把多来源的结构化、半结构化和非结构化数据整合在一起,很多企业还没有做到。另外,在企业内部和外部找到大数据的消费者,向他们营销大数据技术,同样是一件艰苦的工作。”她说。