导航:首页 > 网络数据 > 企业对大数据

企业对大数据

发布时间:2023-08-09 13:47:30

A. 大数据对企业有什么帮助

数字化转型是所有企业降本增效的内在需求。

1、可以降低企业的成本。2017年10月国际供应链大会上世界经济论坛发布的《第四次工业革命对供应链的影响》白皮书指出,数字化变革将使制造业企业成本降低17.6%、营收增加22.6%,使物流服务业成本降低34.2%、营收增加33.6%,使零售业成本降低7.8%、营收增加33.3%。

2、可以提升企业的效率。互联网服务直接引起计算服务、信息服务的集中,并进一步促进了各类服务资源的集中,使得集中式、开放型服务平台有了很大发展空间。根据研究显示,以“数据驱动型决策”模式运营的企业,通过形成自动化数据链,推动生产制造各环节高效协同,大大降低了智能制造系统的复杂性和不确定性,其生产力普遍可以提高5%—10%。

3、企业流程再造的必由之路。在数字化环境下,企业之间处于纵横交错的网络关系,面对分散的网络节点,整合多方资源的平台型产业组织应运而生,企业价值创造模式由传统线性向链条式、网络化转变,使得传统企业之间竞合方式趋于生态化、平台化。

B. 企业如何实现对大数据的处理与分析

企业如何实现对大数据的处理与分析
随着两化深度融合的持续推进,全面实现业务管理和生产过程的数字化、自动化和智能化是企业持续保持市场竞争力的关键。在这一过程中数据必将成为企业的核心资产,对数据的处理、分析和运用将极大的增强企业的核心竞争力。但长期以来,由于数据分析手段和工具的缺乏,大量的业务数据在系统中层层积压而得不到利用,不但增加了系统运行和维护的压力,而且不断的侵蚀有限的企业资金投入。如今,随着大数据技术及应用逐渐发展成熟,如何实现对大量数据的处理和分析已经成为企业关注的焦点。
对企业而言,由于长期以来已经积累的海量的数据,哪些数据有分析价值?哪些数据可以暂时不用处理?这些都是部署和实施大数据分析平台之前必须梳理的问题点。以下就企业实施和部署大数据平台,以及如何实现对大量数据的有效运用提供建议。
第一步:采集数据
对企业而言,不论是新实施的系统还是老旧系统,要实施大数据分析平台,就需要先弄明白自己到底需要采集哪些数据。因为考虑到数据的采集难度和成本,大数据分析平台并不是对企业所有的数据都进行采集,而是相关的、有直接或者间接联系的数据,企业要知道哪些数据是对于战略性的决策或者一些细节决策有帮助的,分析出来的数据结果是有价值的,这也是考验一个数据分析员的时刻。比如企业只是想了解产线设备的运行状态,这时候就只需要对影响产线设备性能的关键参数进行采集。再比如,在产品售后服务环节,企业需要了解产品使用状态、购买群体等信息,这些数据对支撑新产品的研发和市场的预测都有着非常重要的价值。因此,建议企业在进行大数据分析规划的时候针对一个项目的目标进行精确的分析,比较容易满足业务的目标。
大数据的采集过程的难点主是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片也是需要深入的思考问题。
第二步:导入及预处理
数据采集过程只是大数据平台搭建的第一个环节。当确定了哪些数据需要采集之后,下一步就需要对不同来源的数据进行统一处理。比如在智能工厂里面可能会有视频监控数据、设备运行数据、物料消耗数据等,这些数据可能是结构化或者非结构化的。这个时候企业需要利用ETL工具将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,将这些来自前端的数据导入到一个集中的大型分布式数据库或者分布式存储集群,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。对于数据源的导入与预处理过程,最大的挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
第三步:统计与分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。数据的统计分析方法也很多,如假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。在统计与分析这部分,主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
第四步:价值挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
总结
为了得到更加精确的结果,在大数据分析的过程要求企业相关的业务规则都是已经确定好的,这些业务规则可以帮助数据分析员评估他们的工作复杂性,对了应对这些数据的复杂性,将数据进行分析得出有价值的结果,才能更好的实施。制定好了相关的业务规则之后,数据分析员需要对这些数据进行分析输出,因为很多时候,这些数据结果都是为了更好的进行查询以及用在下一步的决策当中使用,如果项目管理团队的人员和数据分析员以及相关的业务部门没有进行很好的沟通,就会导致许多项目需要不断地重复和重建。最后,由于分析平台会长期使用,但决策层的需求是变化的,随着企业的发展,会有很多的新的问题出现,数据分析员的数据分析也要及时的进行更新,现在的很多数据分析软件创新的主要方面也是关于对数据的需求变化部分,可以保持数据分析结果的持续价值。

C. 企业如何进行大数据分析

1、数据存储和管理


MySQL数据库:部门和Internet公司通常使用MySQL存储数据,优点是它是免费的,并且性能,稳定性和体系结构也都比较好。


SQLServer:SQLServer2005或更高版本集成了商业智能功能,可为中小型企业提供数据管理,存储,数据报告和数据分析。


DB2和Oracle数据库是大型数据库,适用于拥有大量数据资源的企业。


2、数据清理类


EsDataClean是一种在线数据清理工具,不管是规则定义还是流程管理都无需编写sql或代码,通过图形化界面进行简单配置即可,使得非技术用户也能对定义过程和定义结果一目了然。


3、数据分析挖掘


豌豆DM更适合初学者。它易于操作且功能强大。它提供了完整的可视化建模过程,从训练数据集选择,分析索引字段设置,挖掘算法,参数配置,模型训练,模型评估,比较到模型发布都可以通过零编程和可视化配置操作,可以轻松简便地完成。


4.数据可视化类


亿信ABI是具有可视化功能的代表性工具。当然,它不仅是可视化工具,而且还是集数据分析、数据挖掘和报表可视化的一站式企业级大数据分析工具。


关于企业如何进行大数据分析,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

D. 大数据给企业带来哪些决策

大数据对企业的作用:

1、实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器。

2、及时获取竞争对手的公开信息以便研究同行业的发展与市场需求。

3、为企业决策部门和管理层提供便捷、多途径的企业战略决策工具。

4、大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存储、挖掘的相关费用,是提高企业核心竞争力的关键。

5、提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。大数据对现代企业管理决策的影响有哪些
在目前的企业管理过程中,也逐渐对大数据时代下的企业管理与决策模式引起了足够
的重视。结合目前的实际情况来看,企业在内外部的管理模式上涉及到的内容不断增多,
从而呈现出了非常明显的复杂性,这对于企业决策以及决定性关系的数据分析工作带来了
一定的影响。文章主要针对大数据对现代企业管理决策产生的影响进行了深入的分析,并
结合实际情况提出了一些有效的应对措施,希望能为相关人员提供合理的参考依据。
已为您找到9篇相关文档
关键词:大数据;现代企业;管理;决策;影响
如今,各国经济之间实现了有效的结合,这就造成企业在发展过程中所面临的市场竟
争压力不断的增加,对于相关的企业而言,而竞争不仅体现在了企业之间,同时还体现在
了企业的管理方面。针对这种现象,对于相关的决策人员而言,一定要对目前市场环境进
行全面的了解,从而才能保证最终所做的决策具备一定的合理性。因此,一定要对大数据
的真正含义进行全面的了解,这样才有助于企业的管理人员做出正确的管理决策,从而促
]进企业可以在未来实现更加稳定的发展。

E. 大数据对企业决策的影响

大数据影响了企业主体的轿顷判断和决策,改变了企业的传统文化氛围和基础立场。

大数据理念的提出,影响了整个人类社会的发展。

对于企业来说,通过大数据分析系统的应用,不仅影响了企业主体的判断和决策,同时也改变了企业的传统文化氛围和基础立场,使企业在原始积累的程度上不断创新,催生出全新的发展领域和经营范围,这对于企业来讲无疑是有利的。

但是,如果企业管理者一味依靠大数据闭隐陆分析结果,势必也会影响自身的判断,使企业的携迹发展陷入僵局。

大数据时代的到来,企业的经营主体也应该审时度势,作出基本的战略调整规划。

大数据时代下企业传统管理模式存在的弊端

1.管理人员对大数据的缺乏正确认知。

2.企业对大数据分析技术的掌握能力较差。

3.专业数据分析人才缺失严重。

F. 为什么大数据分析对于企业来说很重要

大数据的概念已经存在多年了。现在,大多数企业都知道,如果他们捕获流入其业务的所有数据,则可以应用分析并从中获得可观的价值。但是即使在1950年代,也就是几十年前没有人说出“大数据”一词的时候,企业仍在使用基本分析(本质上是电子表格中的数字进行人工检查)来发现洞察力和趋势。

但是,大数据分析带来的新好处是速度和效率。几年前,一家企业可以收集信息,运行分析和挖掘出可用于将来决策的信息,而如今,企业可依据可视化数据立即做出决策,更快地反应以保持敏捷的能力为企业提供了前所未有的竞争优势。

为什么大数据分析很重要?

大数据分析可帮助企业利用其数据来抓住新的机会。优秀的数据分析,将带来更明智的业务流动,更有效的运营,更高的利润和更精准的客户。那么,大数据分析到底有哪些价值呢,让我们一起来看一下:

1.降低成本。诸如Hadoop和基于云的分析之类的大数据技术在存储大量数据方面带来了显着的成本优势-此外,它们还可以确定更有效的开展业务的方式。

2.更快,更好的决策制定。借助Hadoop和内存分析的速度,再加上分析新数据源的能力,企业能够立即分析信息,并根据所学知识做出决策。

3.新产品和服务。通过分析来衡量客户需求和满意度的能力,可以为客户提供他们想要的东西。Davenport指出,借助大数据分析,越来越多的公司正在开发新产品来满足客户的需求。

工作原理和关键技术

大数据分析需多种类型的技术可以协同工作,以帮助您从信息中获得最大价值。以下为关键技术及相关原理:

机器学习 。机器学习是训练机器学习方法的AI的特定子集,它可以快速,自动地生成可以分析更大,更复杂的数据并提供更快,更准确的结果的模型,甚至是非常大规模的模型。通过建立精确的模型,企业可以更好地识别可获利的机会-或避免未知的风险。

数据管理 。在对数据进行可靠分析之前,需要对其进行高质量管理。随着数据不断流入和流出企业,建立可重复的过程以建立和维护数据质量标准非常重要。一旦数据可靠,企业应建立一个主数据管理程序,以使整个企业都在同一页面上。

数据挖掘 。数据挖掘技术可帮助您检查大量数据以发现数据中的模式-该信息可用于进一步分析,以帮助回答复杂的业务问题。借助数据挖掘软件,您可以筛选出数据中所有混乱和重复的噪音,查明相关的内容,使用该信息评估可能的结果,然后加快做出明智决定的步伐。

Hadoop 。这个开源软件框架可以存储大量数据,并在商用硬件群集上运行应用程序。由于数据量和种类的不断增加,它已成为开展业务的关键技术,并且其分布式计算模型可以快速处理大数据。另一个好处是Hadoop的开源框架是免费的,并使用商品硬件存储大量数据。

内存分析 。通过分析系统内存(而不是硬盘驱动器)中的数据,您可以从数据中获得即时见解并快速采取行动。该技术能够消除数据准备和分析处理等待时间,以测试新场景并创建模型;这不仅是企业保持敏捷性并做出更好的业务决策的简便方法,还使他们能够运行迭代和交互式分析方案。

预测分析 。预测分析技术使用数据,统计算法和机器学习技术根据历史数据确定未来结果的可能性。就是要对未来会发生的事情提供最佳的评估,因此企业可以更加自信地认为自己正在做出最佳的业务决策。预测分析的一些最常见应用包括欺诈检测,风险,运营和营销。

文本挖掘 。 借助文本挖掘技术,您可以分析来自Web,注释字段,书籍和其他基于文本的来源中的文本数据,以发现以前从未发现的见解。文本挖掘使用机器学习或自然语言处理技术来梳理文档,以帮助您分析大量信息并发现新的主题和术语关系。

G. 企业需要大数据的原因有哪些

1,企业领导层对大数据的认知
随着时代的变迁,商业模式已经发展过度到了数据时代,相较于以前营销为王的商业模式,大数据更能给现代企业创造价值,正所谓火车跑的快,全靠车头带,企业各部门领导者,甚至是老板本人,能对大数据应用有一个正确的认识,则更能把握企业发展前进的方向与命脉。
2,公众才是企业的决策者
在中国,许多的企业都是一人掌天下,老板往往把握着企业的命运和未来,但在大数据时代里,企业将慢慢树立以社会公众为决策主体的观念,决策的理念由狭隘的企业领导层转移到社会公众上,通过媒体、社交网络等平台收集社会公众的意见和观念,形成内外双向的大数据挖掘和分析,以提高决策的广泛性,合理性,正确性。
3,打造好信息化的基础,才能挖掘积累出大数据库
企业以信息化为基础,才能实现大数据挖掘,积累和分析,企业所有的产品数据、运营数据、供应链数据和外部数据都是来自于信息化系统,因此打好信息化基础就变的尤为重要了,完善信息化基础,让数据来源更真实和可靠。
4,便捷高效的大数据分析系统
大数据是一个海量的资源池,甚至如汪洋大海一般让人望而生畏,那么这样一个海量的资源池,企业怎样才能充分且高效的去吸收它的营养呢?这就需要一个高效率的云计算系统才能很好的完成这个任务,一个高效的云计算系统,可以使大数据里的资源合理分配,充分利用,给且的分析研究部门带来便捷,让工作效率得到显著的提升。
在未来大数据将成为最重要的经济资产,谁掌握了它便是掌握了竞争力,企业应与时俱进,敞开胸怀迎接大数据,重视大数据,利用大数据,在茫茫商海,乘风破浪,驶向远方。

阅读全文

与企业对大数据相关的资料

热点内容
鸿蒙系统带病毒的app怎么安装 浏览:35
iphone6sp发货问题 浏览:197
手机迅雷BT文件已移除 浏览:766
文泰保存文件怎么找不到 浏览:608
苹果账号没有充值买了东西吗 浏览:358
汇编中数据在内存中如何分布 浏览:308
数据库单用户模式 浏览:681
c生成utf8格式文件 浏览:40
电脑什么app可以免费看电视 浏览:573
手机文件的后缀名 浏览:81
excel如何找到获取数据按钮 浏览:688
本电脑的所有共享文件夹在哪里 浏览:444
网络营销投资管理有哪些 浏览:665
手机java插件 浏览:598
mac编程文件为什么文件位置找不到 浏览:273
手术教程APP有哪些 浏览:488
10岁女孩qq名字可爱 浏览:496
微信转账中转专用帐户5 浏览:355
vb获取系统文件夹 浏览:345
iphone5越狱后开机花屏 浏览:875

友情链接