❶ 大数据金融创新与发展
img src=' https://p26 . toutiaoimg.com/large/c5f 00022 e 860696 a06b '/
近年来,大数据已经成为重塑金融竞争格局的重要支撑和抓手。特别是“十三五”规划纲要明确提出实施国家大数据战略,把大数据作为基础性战略资源,加快数据资源共享、开放和发展。
在此背景下,为全面落实“十三五”规划提出的国家大数据战略,推动金融业转型升级和创新发展,助力上海建设国际金融中心和科技创新中心,“大数据时代的金融野盯服务与创新”论坛于8月17日在中国金融信息中心举行。论坛由上海市经济和信息化委员会、上海市金融服务办公室和上海银监局指导。由新华社中国经济信息社、新华社新闻信息中心、新华网、上海证券报、中国金融信息中心、中国银行上海市分行主办,易迅财经协办,证大财富特别支持。
img src=' https://P3 . toutiaoimg.com/large/c5b 00057 DCC 4232 c 44 e '/
大数据之父勋伯格曾说,“大数据开启了时代的重大变革。正如望远镜让我们感受宇宙,显微镜让我们观察微生物一样,大数据正在改变我们的生活和我们理解世界的方式,成为新发明和服务的来源,更多的变化即将发生”。
img src=' https://P3 . toutiaoimg.com/large/c5e 0002510 CD 74d 6298 '/
张笑君表示,传统金融行业如何利用大数据技术和思维实现产业转型变革,推动金融服务创新发展,是每个企业都应该深入思考的问题;如何利用大数据降低金融风险,促进“大数据新金融”的可持续发展,使其发挥更大的社会价值,也是政府部门和监管部门面临的新课题。
据了解,2016年是“十三五”的开局之年,也是新华社业务转型发展的重要一年。2016年7月底,新华社全面完成国内分支机构采编管理“两分离两加强”重大机构改革。7月1日,新闻信息中心上海中心正式成立,这也标志着新华社在上海的各项事业进入了一个新阶颂罩和段。
“在保持传统信息产品和业务优势的同时,上海证券报将能够专注于国家战略和上海本地事业的整体发展。在垂直管理体制和上海分社的双重领导下,将继续夯实基础、求新求变,进一步扩大新华社新闻产品市场的覆盖面和影响力,为上海“四个中心”建设做出我们的贡献。”张笑君说。
img src=' https://P6 . toutiaoimg.com/large/c5d 000581 f 9 CB 43 f 6 c 4 '/
上海市经济和信息化委员会副主任邵志清
上海市经济和信息化委员会副主任邵志清表示,这次论坛主要是为了规划所谓的“形势、战略和技术”。所谓“趋势”,永远不应该是趋势的敌人。一个人,一个企业做一件事,一定要顺应时代潮流,顺势而为。今天,我们已经进入了信息文明时代,其中第一个是PC时代,第二个是网络时代,第三个是大数据时代。
大数据可以开发成引擎吗?邵志清讲了三个方面。首先,世界进入了一个新时代。90年代中期加入互联网大家庭,实现了人际交往的突破,让“一条家信抵一吨金”不复存在。现在,世界各国都在计划实现大数据时代的国家发展,因为大数据已经是一种资源,一种资产。显然,它已经成为一项国家发展战略。大数据能力已经成为综闷凯合国际竞争力和国际影响力不可或缺的方面。
第二,大数据已经成为我们的生产要素。大数据为计算开辟了新模式和新路径。产业方面,有新业务、新商业模式、新业态,给新经济带来很多活力。现在政府掌握了大量的大数据资源,如何服务社会和市场,从而激发市场的活力和社会的创造力,在社会治理方面如何管理网格。大数据也带来了很多机会,例如,它可以用于控制城市基础设施、环境保护、食品药品安全和交通运输。
第三,利用大数据安装创新驱动发展的强大引擎,要从资源、技术、使用、产业、安全等几个方面着力。
邵志清表示,最近上海也在制定大数据发展的实施意见,对接国家层面的战略,结合上海实际,大概有几个方面要做:要素供给、使用创新、产业发展。他认为,要加快几个方面的建设:一是整合共享的资源流通体系。二是创新活跃的行业使用体系。三是发展自主可控的数据技术服务体系。第四是世界一流的大数据基础设施体系。第五,可信、安全、独立的担保体系。
img src=' https://P3 . toutiaoimg.com/large/c5e 0002510d 22 a 7942 e '/
上海数据交易中心首席运营官沈翔宇
“在具体循环方面,我们对所有数据做了从高风险到低风险的评估。从用户产生的原始数据到后来产生的数据,无论是对个人还是对群体,都有几个要求。进入流通,我们有自主知识产权的六要素标准:数据要有ID,数据要有维度主键,也就是Key。这是分配ID、分配key、设置限制、数据提供及时性、设置交易价格的角度。”他们把数据交易中心能给大家提供的服务分为会员、挂牌、撮合、分销、清算服务等五个方面。沈翔宇说会有一个交易平台给大家用。
img src=' https://P6 . toutiaoimg.com/large/C5 c 00057 e 30 BF 384969 '/
上海大数据联盟
常务副秘书长马慧民
上海大数据联盟常务副秘书长马慧民演讲主题是《大数据推动产业创新》。市场交易成本主要是由信息成本和讨价还价成本构成。他说,企业组织成本主要是指维持企业内部各个部门运转所需要的各类行政成本和协调成本。
当企业内的组织管理成本扩大到等于市场交易费用时,企业达到其最大边界。比如说大数据、移动互联网等新型技术让出租车行业交易费用大幅度降低,传统出租车公司逐渐被中间市场——平台公司影响。比如说滴滴打车、Uber,有了这些平台,交易成本大大降低了。互联网促进和推动这个产业的发展,同时为产业的生产也带来了变革。大数据和相关技术解决了某种信息不对称领域引起的交易成本增加的过程。
通过大数据可以进行精准营销。“我们通过很多数据采集之后,我们会形成一个用户画像,无论是线上数据还是线下的数据,集合在一起之后就知道这个个人或者是企业需要什么样的东西。这里就解决了一个问题,就是线上、线下数据加在一起的个人标签。”马慧民说。
上海交通大学互联网金融研究所所长罗明雄
上海交通大学互联网金融研究所所长罗明雄分享的主题是《从互联网金融投融资看大数据金融》。他说,互联网金融等同于P2P、等同于骗子这是非常不准确的,P2P只是互联网金融当中的一个分支,而骗子只是打着P2P的旗号去做的行骗。他把大数据产业链条分为四个部分包括数据源、数据采集与存储、数据分析与挖掘和大数据使用。
什么人可以做好大数据金融,罗明雄说,一个是可以合法拿到大量的非结构化数据,二是能够对这些非结构化数据进行专业的挖掘、梳理、清洗。他建议大家不要把银行完全想像成传统金融机构,银行业在变,银行会通过很多领域来进行思考,要做风控,会拿到很多的数据,然后把这些数据打通,包括你的信贷风控、精准营销、运行决策优化。他说,银行的电商把信息打通,本质就非常类似于余额宝,余额宝就是利用信息化手段,让老百姓以极低门槛享受一个私人银行般的理财服务。
罗明祥说,传统的供应链金融是以银行或传统金融机构主导,通过绑定核心企业通过给核心企业授信,并给予其上下游企业一定支持,对供应链金融企业的BD能力以及自身资源能力提出很大的挑战。近期以B2B或者是SaaS模式切入供应链金融,从“三流”切入成为供应链金融最容易弯道超车的商业模式。供应链金融的本质是你能够抓到中小的企业为他提供整套供应链金融服务。
万达金融集团总裁助理兼万达征信公司总经理嵇磊
万达金融集团总裁助理兼万达征信公司总经理嵇磊结合他在银行、信贷行业和征信领域的工作体会与大家分享了征信行业的发展机遇。
国外征信行业发展情况来讲,美国的征信体系最为成熟,现已形成从数据采集、数据标准化、数据处理到信用使用等成熟完整的产业链布局,从而形成全球最大的市场规模。嵇磊说,美国征信行业的发展历程、动因及趋势,对我国征信市场及机构发展具有很好的借鉴意义。从发展路径看,美国的征信行业经历了快速发展、法律完善、行业整合及成熟发展四大阶段,最后经过行业洗牌整合,机构数量从最多时的2000家减少至500家,并逐渐出现全国性征信巨头。
研究分析国外市场,是为了更好的研判中国征信市场。至2015年末,央行征信系统已收录8.8亿自然人信息,其中3.8亿有信贷记录;收录企业及其他组织2120万户,其中577万户有信贷记录。伴随着庞大消费市场的逐步成熟、消费信贷的快速增长、互联网及大数据使用的跨越式发展,更多的社会第三方征信机构参与到我国征信体系建设中。
尽管成立背景不同、数据类型各异,但在个人征信业务的具体规划上,各家征信公司均不约而同地突出了“大数据”和“互联网征信”。互联网征信机构收集信息面宽,可以覆盖无法在银行留下信贷记录的庞大群体,从而成为央行征信体系的有益补充。
嵇磊认为,征信业最好的时代已经到来。随着法律法规的进一步完善、消费经济持续增长以及大数据、互联网技术的发展,征信行业正面临前所未有的发展机遇:一是法律法规的完善为征信发展提供支持;二是消费经济增长推动征信业持续发展;三是大数据及互联网促动征信业务全面升级;四是社会发展提高人们对信用价值的认知。
翼勋金融总经理孙海江
翼勋金融总经理孙海江表示,大数据的成长速度非常快,现在整体的大数据,人类90%数据都是在最近三年产生的。每天要使用消费类的软件,比如说滴滴打车这样的工具类软件以及金融软件等等,都会产生大量的数据。这些数据的服务能够产生价值,同时这些数据使用也能够带来价值。但是其实这个当中还有数据为我们带来的困扰。
在圆桌讨论环节,光大云付副董事长兼总裁夏令武、绿地金服CEO杨晓冬、上海互联网大数据工程研究中心主任陆晋军、证大财富总裁戴卫新、前海征信副总经理施奕明围绕四个议题展开,分别是:大数据时代为金融业带来的新机遇;大数据 金融如何服务小微企业;如何管理大数据征信使用中存在的挑战与风险;政府如何监管并服务于大数据金融创新。
光大云付副董事长兼总裁夏令武
光大云付副董事长兼总裁夏令武说,大数据和互联网最近几年的飞速发展给金融业带来很多机遇。这种机遇是两个方面,一个方面是给传统金融机构带来了更大、更强的生存能力。有人说互联网会颠覆传统机构。现在如果说从大数据维度来看,其实不是的。传统金融机构掌控了金融业、经济部门最大的数据。因为金融机构就是经营数据的。所以我想大数据增强了传统金融机构的能力。另一方面,大数据也推动了新的金融服务形式的产生,而光大云付就是这两方面的结合。
绿地金服CEO杨晓冬
作为陆金所创始管理团队之一,绿地金服CEO杨晓冬说,大数据最重要的是要降低企业的成本,从经营角度来说,大数据可以帮助我们提高风控能力。我对大数据未来的远景还是充满信心的,但目前的状况还是不令人满意的。举一个例子,在美国,这是我在90年代做的项目。90年代的时候,你在美国就可以在互联网上开户,我不用1秒钟就可以知道所有的信息。但是在目前,在中国的信息还是岛式的信息,没有一个统一的信息可以证明这个人是可信的,可以线上开户。市场数据成本是否合理,是关系到大数据能否成功的关键。他希望政府可以为不仅是金融企业,要为所有企业提供公共信息。这样才可以帮助金融企业降低成本。
上海互联网大数据工程研究中心主任陆晋军
上海互联网大数据工程研究中心主任陆晋军说,现在整个大数据行业存在一个乱象。一方面拥有数据的,比如说政府、银行、运营商很难开放。另一方面,有很多公司又号称有数据。但这个数据哪里来?可能会涉及到到隐私泄露的问题。围绕金融谈大数据,谈移动互联网,这是真正可以改变金融领域供给侧改革的技术和手段。因为有了移动互联网、各种宝、各种贷,为老百姓提供了更多的选择,当然选择过程当中又带来了很多风险。这是做技术、管理、监管的人要去解决的问题。通过大数据一定程度可以解决客户画像、客户获取、征信等等的问题,要把它做好。
陆晋军说,大数据一定要开放,一定要跨境。如果说你是封闭群体的数据也可以做数据分析,但是只有打开了通路,和不同领域的数据做交换、结合之后才可以产生更多的价值。这也是大数据交易所面临的一个非常重要的课题,而且要注重大数据的安全。
证大财富CEO戴卫新
证大财富的CEO戴卫新认为精准营销和风险管理两者结合度是非常高的。他们公司在两年前就做了“淘宝达人贷”,面对的客户是专门在淘宝上有消费的人群做信用贷款。在推出这个产品的时候,芝麻信用分还没有出来,通过这两年的数据积累,未来在大数据使用上,可以做一些改善。可以结合芝麻信用分来看我们客户的表现以及真实的芝麻信用分有巨大的关联性,来验证芝麻信用分在这样一个领域的市场,是不是有更好的使用场景。
戴卫新表示,金融最大的要点就是风险控制,大家数据共享可以有效降低在这一块上的损失。他说证大财富一直和上海官方机构、民营征信机构等合作,做数据共享。
前海征信副总经理施奕明
前海征信副总经理施奕明从征信和金融的关系谈了他的看法。金融的核心是风险定价,风险控制是非常重要的手段。原来传统的金融方式都是以线下方面为主,比如说贷款必须要面签。但是现在很多都是远程化、线上化的方式,如果说没有像现代征信业的发展,像远程开户、人脸识别这样的技术是不可能实现的。未来大数据在金融行业将会越来越重要。
施奕明介绍征信业面临的挑战是信息孤岛问题、安全合规问题和技术创新问题。
他说,现在征信把信息分为三大类,第一类是公共信用数据,第二类是金融信用数据,第三类是生活信用数据。这三方面的数据分别在各个不同的地方,要把这三类进行整合,需要一个大的战略,数据联盟、数据交易中心的出现为数据整合提供了很好的基础,也会成为征信业未来发展的契机。
大数据时代一个很大的问题就是个人信息披露泛滥。前海征信操作是非常规范的,任何数据的采集和披露都是要遵照合法的途径和规矩来做的,大数据的前提是合法合规。
在大数据征信时代有很多的创新点,但必须要谨慎。传统的金融征信其实已经被验证过无数次了,是可以非常有效的判断一个人的信用风险的。现在大数据发展很快,但是这些信息和标签是不是可以真正的防止风险,这是需要待验证的。因此并不会把所有创新都推向市场,需要经过长期验证之后,才会非常负责地推向市场。
主持人:第一财经广播主持人叶柳
❷ 如何构建银行业大数据分析平台
一是银行与电商平台形成战略合作。银行业共享小微企业在电商平台上的经营数据和经营者的个人信息,由电商平台向银行推荐有贷款意向的优质企业,银行通过交易流水、买卖双方评价等信息,确定企业资信水平,给予授信额度。建设银行曾在这方面做过有益的尝试。此外也有银行参股电商、开展数据合作的案例。
二是银行自主搭建电商平台。银行自建电商平台,获得数据资源的独立话语权。在为客户提供增值服务的同时,获得客户的动态商业信息,为发展小微信贷奠定基础,是银行搭建电商平台的驱动力。2012年,建设银行率先上线“善融商务”,提供B2B和B2C客户操作模式,涵盖商品批发、商品零售、房屋交易等领域,为客户提供信息发布、交易撮合、社区服务、在线财务管理、在线客服等配套服务,提供的金融服务已从支付结算、托管、担保扩展到对商户和消费者线上融资服务的全过程。
三是银行建立第三方数据分析中介,专门挖掘金融数据。例如,有的银行将其与电商平台一对一的合作扩展为“三方合作”,在银行与电商之间,加入第三方公司来负责数据的对接,为银行及其子公司提供数据分析挖掘的增值服务。其核心是对客户的交易数据进行分析,准确预测客户短时间内的消费和交易需求,从而精准掌握客户的信贷需求和其他金融服务需求。
银行业有处理数据的经验和人才。数据分析和计量模型技术在传统数据领域已得到较充分运用,同时也培养出大批精通计量分析技术的人才。如在风险管理方面,我国金融监管部门在与国际接轨过程中,引入巴塞尔新资本协议等国际准则,为银行业提供了一套风险管理工具体系。银行在此框架下,利用历史数据测度信用、市场、操作、流动性等各类风险,内部评级相关技术工具已发挥出效果,广泛应用于贷款评估、客户准入退出、授信审批、产品定价、风险分类、经济资本管理、绩效考核等重要领域。
❸ 大数据助推金融业发展
大数据助推金融业发展
专家表示,对于金融行业来说,尤其是以银行、保险为主的金融行业都是非常注重数据应用的,很多企业已经在利用大数据去服务其风险管理、客户营销和运营管理等工作。大数据未来将成为全球金融业竞争的主要“阵地”之一。对大数据的应用能力已经成为金融企业的核心竞争力,未来有竞争力的金融企业一定是有深厚大数据文化的企业。
今年《政府工作报告》明确提出要“发展壮大新动能。做大做强新兴产业集群,实施大数据发展行动”。近年来,以信息通信技术的创新为基础,互联网、大数据和人工智能等蓬勃发展,新的经济形态展现出强劲的生命力。接受《金融时报》记者专访的毕马威中国大数据团队学科带头人魏秋萍博士表示,对于金融行业来说,尤其是以银行、保险为主的金融行业都是非常注重数据应用的,很多企业已经在利用大数据去服务其风险管理、客户营销和运营管理等工作。
金融大数据值得关注
魏秋萍表示,金融行业本身是一个自带很大流量的行业。比如一个规模较大的银行,都拥有海量的客户。银行可以利用大数据技术,针对不同的客户群体制定不同的个性化服务方案,可以创建出很多不同的场景。同时,银行拥有很多的数据维度,这些数据项又比一般的网络行为大数据拥有更高的价值密度,可以发挥很大的业务价值。因此,金融行业充分利用自己的流量、数据,有效结合外部数据,再配套先进的技术和理念,必然可以成为一个生态体系中的核心组织。
大数据已经被广受关注,但到底什么是大数据,并没有一个被大家普遍认可的定义。魏秋萍认为,要认识大数据,可以从数据和技术两大层面来看。在大数据这个热词没有出现之前,金融行业早就开始了商务智能分析和数据挖掘,不过这时被分析的数据往往是企业内部的结构化数据。目前,金融企业分析的数据已经不再拘泥于此,而是大大拓宽了数据的广度,除了结构化数据外,也会根据实际的分析需要来引入非结构化数据,同时也会结合企业内部数据和企业外部数据来开展分析。在技术层面,也有了很大的变革,包括存储能力、计算能力和算法种类等,都有长足的进步。在10多年前做数据挖掘的时候,往往由于样本量庞大需要做采样技术,现在有了高性能存储和内存计算等技术的更新,采样基本不再是必需的了。
魏秋萍预计,大数据未来将成为全球金融业竞争的主要“阵地”之一。与互联网企业相比,虽然金融行业践行大数据战略的起步要晚了一些,但是金融行业利用大数据的进程也发展得很快。对大数据的应用能力,已经成为金融企业的核心竞争力,未来有竞争力的金融企业一定是有深厚大数据文化的企业。大数据提供了全新的沟通渠道和客户经营手段,可以加深企业和客户的互动,更及时精准地洞察客户。大数据也可以帮助金融企业滋生新型的金融业态参与市场竞争,用大数据来武装自己的金融企业未来一定是某个生态链中的关键组件。
风控需同步跟上
魏秋萍表示,应用大数据必须要重视数据质量和技术创新。举例来说,把大数据应用于风险控制是金融业应用大数据最典型的场景之一。在这一场景的应用中,有以下两点必须注意:一是对于数据的整合和数据的治理。风控是一个复杂的过程,要利用数据对风险进行穿透式管控,必须实现用真实的数据再现业务流程,因此,数据的可获得性和数据质量非常关键。二是先进技术的应用和创新。风控是魔高一尺道高一丈的游戏,“小偷”的伎俩层出不穷,作为“警察”的风控必须要有不断创新的能力,不断优化风控的技术。她还表示,从大数据风控技术的角度看,国内和国际的差异并不大,中国也走在了技术的前沿。但是,国外的金融企业对创新技术的容错会比国内好,他们有一些机制来鼓励创新技术的试错。这一点值得国内企业学习。
魏秋萍还认为,应用大数据的时候,数据安全也要同步跟上。保障数据安全的方法主要是三大手段:第一,需要依靠健全的法律制度来保障和约束数据交易的买卖双方;第二,需要加强数据买卖双方的道德约束;第三,需要通过安全技术来保障数据的安全。
金融企业应用大数据是一个逐步发展的过程,大数据的价值释放也必然是循序渐进的。企业内部一致的大数据理念和数据驱动决策的文化,也是大数据助推金融企业发展的保障。
❹ 大数据技术在金融行业有哪些应用前景
大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到回10年,金答融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。
❺ 大数据在金融领域的应用
大数据在金融领域的应用如下:
1. 概述
近年来,随着大数据、云计算、区块链、人工智能等新技术的快速发展,这些新技术与金融业务深度融合,释放出了金融创新活力和应用潜能,这大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。
在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。
从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
2. 大数据技术在金融行业中的典型应用
大数据技术在金融行业中有着广泛的应用, 下面将介绍大数据技术在银行、证券、保险等金融细分领域中的应用。
3. 金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
❻ 商业银行应用大数据之策
商业银行应用大数据之策
随着以社交网络为代表的web2.0 的兴起、智能手机的普及、各种监控系统及传感器的大量分布,人类正在进入一个数据大爆炸的时代,“大数据”的概念应运而生。大数据被誉为继云计算、物联网之后IT产业又一次颠覆性的技术变革,已经引起各方面的高度关注。大数据的意义在于从海量数据中及时识别和获取信息价值,金融业在IT基础设施、数据掌控力和人才富集度方面较之其他产业更具优势,具备了深度“掘金”的潜力。但是,大数据也给金融业带来剧烈的挑战与冲击,我国商业银行需要树立“数据治行”理念,明确大数据战略的顶层设计,加强大数据基础设施建设,实施稳妥的大数据安全策略,方能从容迎接大数据时代。
大数据带来的冲击与挑战
(一)传统发展战略面临冲击。传统银行发展战略,是在预计未来金融政策、经济环境的前提下,根据现有银行人员、网点、客户、资本、存贷款规模等资源占有状况,以及竞争对手、客户需求状况,来确定其战略目标及发展路径和方式的。步入大数据时代后, 对数据资源的占有及其整合应用能力是决定一家银行成功与否的关键因素,而传统的网点、人员、资本等因素则趋于淡化,未来商业银行的客户营销,将主要依靠对不同类型客户需求数据的掌握,并开发设计出安全、便捷、个性化的金融产品。因此,这就要求各商业银行在评判竞争对手实力与自身优势时,要注重考量IT能力与大数据实力;在制定战略目标时,必须兼顾财务承受能力来决定对大数据的投入,从而确保战略规划与大数据支撑相适应;在确定战略目标的实施路径时,必须将互联网金融、电子渠道、数据的收集与挖掘作为向客户提供服务的重要方式和手段。
(二)传统经营方式面临重大转变。在大数据时代, 金融业务与互联网深度融合, 商业银行的经营方式将会发生彻底改变。在产品开发、营销方面,通过对海量交易、行为数据的收集、分析和挖掘,科学构建数据模型, 分层客户的不同金融需求可以得到充分展示,进而针对客户需要、市场需求研发产品、开展营销,真正做到以客户为中心开发设计产品,并实现精准营销,而不是以银行为中心制造、推销产品。在风险防控方面,许多商业银行在风险分析和评估中,虽然已经引入了数量分析方式,但是因历史数据的积累不足,经验判断依然在风险管理、决策中起主导作用。依托大数据,对客户实施多维度评价,其风险模型将会更加贴近市场实际,对客户违约率的取值变得更加精准,长期以来银行凭经验办业务的经营范式将会得到根本改善。在绩效管理方面,可以通过对大数据的有效利用,并借助通讯、视频、移动终端等技术手段,对商业银行员工的工作方式、频率、业绩等做出更加准确的评价,有助于充分发挥绩效考核的正向激励作用。
(三)数据基础设施建设面临严峻考验。进入大数据时代,数据来源的多元化主要体现在两个层面:一是在金融业务链条之外。移动网络设备和网络社交媒体产生了极其丰富的实时化的客户行为数据,在这种环境下,客户行为偏好数据往往隐藏在社交网络之中。如果要实施“大数据工程”,商业银行必须搜集开放的网络数据,但现有的银行IT系统、技术手段还无力搜集、分析、利用大数据。二是在金融业务链条内部。随着专业细分与金融外包的趋势愈加明朗,由一家或少数几家银行掌控关键业务数据的时代已经走向终结,业务数据产生、流转于金融业务链条的各个结点,业务数据、客户行为数据不可能自动集成至某个机构,这对“大数据工程”的实施提出了严峻挑战。
商业银行的应对与谋变
(一)优先搞好大数据战略的顶层设计。大数据战略必须超越电子银行部或IT部门的狭隘视角,面向全局、面向未来,以客户需求、市场需求为导向,建立自身的大数据架构。完整的客户数据必须是多维度的,至少包含以下几个方面:一是客户的基本信息,譬如信用信息、社交关系信息等;二是客户的偏好信息,譬如金融产品偏好、金融服务偏好等;三是客户的行为信息,譬如银行范围内的行为数据、外部行为数据等;四是客户的分析数据,譬如客户风险度、客户价值度等。要想使这些不同维度的数据信息具有分析价值,首先必须具有合理的数据结构。但现实情况却不尽如人意,各银行的数据结构基本上是条块分割的。为此,各银行必须优先搞好顶层机制的设计与改革,逐步打破业务界限,重组业务流程,确保数据灵活性。
在总行层面上,需要抓紧制定大数据工作规划,建立大数据工作推进机制。主管数据部门负责组织协调,对大数据工作进行统筹规划、集中管理;业务部门负责大数据的搜集、整理、存储、分析和应用,全面采集、多方式整合商业银行内外部各类数据,形成数据管理、数据使用、数据推广的有效工作机制。
(二)科学谋划和打造大数据平台。一方面各银行要积极与社交网络、电商、电信等大数据平台开展战略合作,建立数据信息交流、共享机制,全面梳理、整合客户各类信息,将金融服务与社交网络、电子商务、移动网络等深度融合。另一方面各银行也可考虑自行打造大数据平台,以便牢牢掌握核心话语权。
(三)积极建设大数据仓库。着眼于大数据挖掘和分析,对海量数据的持续实时处理,建设数据仓库项目,为服务质量改善、经营效率提升、服务模式创新提供支撑,全面提升运营管理水平。在项目建设中,通过梳理整合经营管理关键数据,建立数据管控体系,搭建基础数据平台。通过数据仓库建设,运用数据挖掘和分析,全方位调整管理模式、产品结构、营销模式、信息战略,从根本上提高风险管理、成本绩效管理、资产负债管理和客户关系管理水平,实现多系统数据的业务逻辑整合,形成全行级客户、产品等主题数据。
(四)以大数据思维推进金融互联网化战略。进入大数据时代,金融产业与信息技术将实现深度融合, 金融电子化的深度、广度将日渐强化。各银行必须顺势而为, 紧紧追随迅猛发展的互联网、移动互联网浪潮, 积极实施金融互联化战略, 尝试构建电子化金融商业模式, 着力发展直销银行、社区智能银行、互联网金融、电子商务等业务。这就要求各银行应当从发展战略的高度,将金融互联网作为未来提供金融服务、提升核心竞争力的主渠道。
(五)依托大数据技术实现风险管理的精细化。大数据时代,商业银行可以消除信息孤岛,全面整合客户的多渠道交易数据,通过经营者个人金融、消费、行为等信息进行授信,有效破解传统信贷风险管理中的信息不对称难题,降低信贷风险。为此,各银行必须深化风险管理体制改革,运用大数据理念来构建以客户为中心的全面风险管理体系,理顺部门间的职责,淡化部门色彩,彻底打破以往小数据模式下形成的部门、机构、区域、产品间数据信息分隔管理以及由分支机构各自分散识别风险的做法,形成按客户集中统一管理数据信息和高效协调机制。
要积极推行把现场调查与非现场数据信息挖掘分析相结合、模型筛查与经验判断相结合,以定性信息与定量财务、经营等多重数据信息的勾稽核验等为重点内容的风险管理创新。总行要通过大量数据信息的挖掘分析,勾画出客户的全景视图,更加全面地评估客户风险状况,有效提升贷前风险判断和贷后风险预警能力。
要进一步完善基于大数据信息平台的集中式风险审查审批体制,采用大数据方式来验证借款人的数据信息,校正申报机构或部门对借款人的风险判断。运用合理的参数和模型,计量出可接受的最大风险敞口,精准识别和动态审查借款人的每一笔融资业务。再利用习惯性数据信息和常识性、逻辑性分析,作出更专业的判断,使风险识别、防范、决策更加可靠、更加贴近实际。
以上是小编为大家分享的关于商业银行应用大数据之策的相关内容,更多信息可以关注环球青藤分享更多干货
❼ 大数据能为银行做什么
随着移动互联网、云计算、物联网和社交网络的广泛应用,人类社会已经迈入一个全新的“大数据”信息化时代。而银行信贷的未来,也离不开大数据。
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。从发展趋势来看,银行大数据应用总的可以分为四大方面:
第一方面:客户画像应用。
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于自身拥有的数据有时难以得出理想的结果甚至可能得出错误的结论。
比如,如果某位信用卡客户月均刷卡8次,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控
包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
第四方面:运营优化。
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
银行是经营信用的企业,数据的力量尤为关键和重要。在“大数据”时代,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。
大数据海量化、多样化、传输快速化和价值化等特征,将给商业银行市场竞争带来全新的挑战和机遇。数据时代,智者生存,未来的银行信贷,是从数据中赢得未来,是从风控中获得安稳。
❽ 金融大数据平台应该如何搭建及应用是否有金融案例可以借鉴的
金融大数据平台的搭建和应用是两个部分,对于金融大数据平台来说,这两个部分都很重要。所以以下的部分我们从大数据平台和银行可以分析哪些指标这两个角度来阐述。
大数据平台的整体架构可以由以下几个部分组成:
1.一个客户
客户主题:客户属性(客户编号、客户类别)、指标(资产总额、持有产品、交易笔数、交易金额、RFM)、签约(渠道签约、业务签约)组成宽表
2.做了一笔交易
交易主题:交易金融属性、业务类别、支付通道组成宽表。
3.使用哪个账户
账户主题:账户属性(所属客户、开户日期、所属分行、产品、利率、成本)组成宽表
4.通过什么渠道
渠道主题:
渠道属性、维度、限额组成宽表
5.涉及哪类业务&产品
产品主题:产品属性、维度、指标组成宽表
鉴于篇幅问题,此处可以参考这篇文章:
华夏银行:大数据技术服务业务需求,实现销售高速增长