❶ 政府利用大数据分析什么
公共部门或政府部门以创建和利用大量数据而闻名。大数据分析为政府机构提供了节省公共资金的机会。实际上,通过有效利用大数据分析,联邦政府每年可以节省数百亿美元。以下是大数据分析对联邦和政府的好处:
快速而完善的决策
当识别出锁定在大数据分析中的趋势和其他见解时,制定组织决策变得更加容易和快捷。这是通过使用流工具和其他技术处理生成的实时数据来实现的。如果这些工具不可用,则决策可以恢复为猜测或完全避免决策过程。
提高生产力
必要工具的可用性使所有用户可以有效地使用大数据分析集来查找信息,做出明智的决定并更好地提供服务。政府更好的选择会转化为增强对公民的服务。
提高透明度并降低成本
许多政府税务机构存储个人信息,这些信息会在整个公共部门中复制。公民不断被要求填写表格以收集政府已经拥有的数据。提供预先填写的表格可以帮助加快处理时间,还可以减少收集到的信息中的错误。
如果将数据存储在中央位置,则所有政府机构都可以轻松地从共享池访问信息。这也有助于降低效率,并确保仅使用正确的数据。
利用大数据分析集的政府可以使信息自由流通,提高透明度并建立与公民的信任。公民了解政府收集的数据以及政府如何处理数据。这种透明性使公民能够监控政府支出的效果,并迫使政府明智地支出。组织可以通过处理和共享大数据分析来将信息作为服务提供。
消除欺诈,消除浪费和滥用
政府中大数据分析的核心优势之一是消除欺诈。此外,组织可以通过识别差异来消除内部浪费。根据任务的不同,这些机构可以消除由政党或其服务人员造成的滥用和欺诈。
减少犯罪和安全威胁
大数据分析可以帮助政府部门发现对社会构成安全威胁的犯罪和其他非法活动。大数据分析还将协助地方政府和政府共同努力,减少社区的犯罪活动。
对大数据分析的仔细分析可以帮助发现异常行为模式,从而表明存在欺诈行为。该模式可用于提供配置文件和统计参数,以识别可疑交易,然后可以对其进行密切监视。在不同数据集上应用以信息为中心的方法有助于提高刑事司法系统的有效性和效率。
增加投资回报率
大数据分析的主要目的是优化IT系统的使用并增强对财务活动的分析。可以整合其数据和分析工具的政府机构将极大地减少基础架构和运营成本。
改善任务成果
大数据分析提供了预测结果和对数据场景进行建模的功能。
改善应急响应
大数据分析可用于应对危险的自然灾害,发现健康问题,防止水资源短缺问题并协调数千名流离失所者。例如,飓风玛利亚(Hurricane Maria),分析用于确定需要快速帮助和更好地分配资源的区域。
识别并减少低效率
仔细分析大数据分析有助于政府机构和地方议会了解他们过去犯的错误。
劳动力效率
大数据分析可以帮助地方政府或其他机构了解员工离职或退休时造成的劳动力缺口。这些机构可以通过确保新员工填补退休人员引入的空白来提供平稳的运营。
大数据分析在政府中的应用
大数据分析的灵活性使其可以在不同领域中使用。通过实施大数据分析平台,政府机构可以访问对其日常功能至关重要的大量信息。对这些信息的实时访问使政府能够指出需要关注的领域,做出更好,更快速的决策并制定必要的更改。以下是可以在政府中应用大数据分析的领域:
卫生保健
医疗保健是世界各地的大问题。许多卫生系统依靠政府补贴和支持。因此,存在资源浪费或政府补贴分配不公的风险。大数据分析使政府有机会清楚地了解资金分配的位置以及分配背后的原因。这意味着政府机构可以更好地控制资源及其对社区的有效性。
农业
很难追踪一个国家乃至全球的牲畜和土地。对于政府而言,要跟踪其公民种植的多种农作物和牲畜将是一项艰巨的任务。大数据分析可以改变政府管理和支持农民及其资源的方式。收集和分析大量
数据的能力使农业管理变得容易。
运输
每天都有数百万的市民在开车或步行时使用公共道路。许多因素都会影响道路安全,例如道路状况,警务人员,车辆安全和天气状况。有了这些因素,几乎不可能控制所有可能导致事故的事情。大数据分析使政府能够监督
运输部门,以确保道路更安全,道路更美好,道路更新。
地方政府机构可以分析从不同道路上的交通流获得的数据。分析工具有助于汇总由道路传感器,摄像机,GPS设备传输的实时交通数据。作为回报,这些信息使交通管理人员能够识别对道路安全的潜在威胁。通过实时调整公共交通路线,可以解决对城市交通流量造成的任何潜在威胁。
教育
大数据分析可帮助政府更好地了解联邦和地方各级的教育需求。
这确保了青年人获得最高质量的教育,这将对该国将来带来极大的好处。
消除贫困
世界上许多国家都试图消除贫困,这已经有很多年了。
大数据分析为政府提供了必要的工具,以揭示关于如何减少全球贫困水平的更好的创新想法。这些数据使确定紧急需求的领域以及如何满足这些需求变得更加容易。
政府用例
天气预报:
中国国家海洋和大气管理局不断从海,陆和空基传感器收集数据。当您听到有关飓风或龙卷风的天气预报时,数据来自NOAA。该组织使用大数据分析方法来收集和分析大量数据,以提供正确的信息。
国家安全:
NSA从大数据分析获得其数据处理能力。它利用了由NSA设计的开源项目Accumulo,为用户提供了将数据存储在大表中的功能,智慧政务:利用大数据分析政府能做那些事儿从而可以轻松地访问信息并增强安全性。当代理商将数据集放在一起时,它可以使用Accumulo调查各种细节,同时阻止访问可能泄露个人信息的信息。
犯罪侦查和预防:
联合国毒品和犯罪问题办公室报告说,2009年犯罪分子洗钱超过1.6万亿美元,占国内生产总值的2.7%。中国财政部金融犯罪执法局(FinCEN)使用大数据分析工具来收集和分析大量银行交易。这有助于打击洗钱,资助恐怖主义和其他非法活动。
网络安全:
国土安全部为传感器采用了入侵检测系统,除了检测恶意软件和未经授权的访问尝试外,该传感器还可以分析进出联邦系统的互联网流量。大数据分析用于识别异常和可疑行为。获得的信息有助于打击网络犯罪。
改进的服务交付:
在自然资源局已经实施了大数据分析,以帮助保护,恢复和管理国家的历史,自然和文化资源,为子孙后代。该机构已创建一个共享服务通知,该信息库包含一个州内其他机构可能需要的每条信息。这种共享的信息池为该机构的利益相关者以及公众提供了见解和分析。
❷ 观点 “政”需要“大数据”的大作用
观点:“政”需要“大数据”的大作用
什么是“大数据”?说白了就是海量的信息资产、快速的数据流动、动态的数据体系、多样的数据类型、巨大的数据价值。“大数据”是信息化时代发展的风向标,信息数据的巨量归集,量变引起的质变效应,让“大数据”像引领了工业革命的蒸汽机一样,催生了互联网应用的新变革。提到“大数据”,仿佛就是互联网IT行业的术语,与政府治理、权力运行毫无关联。实则不然,哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”“大数据”带来的跨界效应,同样在政府治理、经济治理、社会治理等方面也掀起了新的浪潮,在“大数据”时代,政府部门难以置身事外。其实,“大数据”这一互联网领域的时髦热词,在政府工作中并不是陌生词,无论是在考察调研中,还是政府工作报告中,李克强总理都曾多次提及,且反复强调,“不管是推进政府的简政放权,放管结合,还是推进新型工业化、城镇化、农业现代化,都要依靠大数据、云计算。”近日,旨在帮助领导干部掌握大数据相关知识、提高运用大数据能力的《大数据领导干部读本》,在国家行政学院正式发布。这更加表明,党和政府已经高度重视“大数据”,并且将其作为政府治理体系现代化与领导干部治理能力改革提升的新武器。在经济全球化、信息化迅速发展的时代,政府职能加快转变,全面深化改革阔步向前,对于政府部门治理体系与治理能力现代化的要求越来越高。新情况、新问题层出不穷,新任务、新要求接踵而至,更需要我们优化治理模式,让“大数据”成为政府决策的“智囊团”,当好全面深化改革发展的“军师”。只有走在“大数据”降临时代的前列,在经济发展、社会运行的方方面面治理上才能抓住发展机遇,紧跟时代潮流。让“大数据”在现代化的治理中真正发挥作用,关键要抓住决策的源头,在政策研究阶段,发挥“大数据”的优势。彻底改变“一贯做法”“闭门造车”等经验主义、主观主义政策研究方法,“用数据”“用事实”来实事求是、推陈出新。政策研究制定时,既要深入基层、深入一线、深入群众,看实情、听真话、取真经;还要提高对大数据的运用能力,扩大样本数量,规避调研的片面性,把广泛采集数据、综合处理数据、系统分析数据、准确运用数据作为基本的调研方法,在海量的信息数据中分析问题、总结经验、提炼政策,制定更加科学合理、贴合发展实际、满足群众需要的政策决策。“大数据”是一场治理革命,提高行政效能,克服政府治理顽疾,都离不开大数据的充分运用。拥抱“大数据”,迎接新挑战,抢抓新机遇,这是大势所趋,也是潮流使然。
❸ 什么是大数据
中国发展门户网讯 随着新一代信息技术的迅猛发展和深入应用,数据的数量、规模不断扩大,数据已日益成为土地、资本之后的又一种重要的生产要素,和各个国家和地区争夺的重要资源,谁掌握数据的主动权和主导权,谁就能赢得未来。奥巴马政府将数据定义为“未来的新石油”,认为一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为继陆权、海权、空权之外的另一个国家核心权力。此后,一个全新的概念——大数据开始风靡全球。
大数据的概念与内涵
“大数据”的概念早已有之,1980年著名未来学家阿尔文•托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。但是直到近几年,“大数据”才与“云计算”、“物联网”一道,成为互联网信息技术行业的流行词汇。2008年,在谷歌成立10周年之际, 著名的《自然》杂志出版了一期专刊,专门讨论未来的大数据处理相关的一系列技术问题和挑战,其中就提出了“Big Data”的概念。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 也抛出了Big Data概念。所以,很多人认为,2011年是大数据元年。
此后,诸多专家、机构从不同角度提出了对大数据理解。当然,由于大数据本身具有较强的抽象性,目前国际上尚没有一个统一公认的定义。维基网络认为大数据是超过当前现有的数据库系统或数据库管理工具处理能力,处理时间超过客户能容忍时间的大规模复杂数据集。全球排名第一的企业数据集成软件商Informatica认为大数据包括海量数据和复杂数据类型,其规模超过传统数据库系统进行管理和处理的能力。亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。网络搜索的定义为:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。互联网周刊的定义为:"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
综合上述不同的定义,我们认为,大数据至少应包括以下两个方面:一是数量巨大,二是无法使用传统工具处理。因此,大数据不是关于如何定义,最重要的是如何使用。它强调的不仅是数据的规模,更强调从海量数据中快速获得有价值信息和知识的能力。
大数据4V特征
一般认为,大数据主要具有以下四个方面的典型特征:规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value),即所谓的“4V”。
1.规模性。大数据的特征首先就体现为“数量大”,存储单位从过去的GB到TB,直至PB、EB。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能终端等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样性。广泛的数据来源,决定了大数据形式的多样性。大数据大体可分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据问的因果关系弱。
3.高速性。与以往的档案、广播、报纸等传统数据载体不同,大数据的交换和传播是通过互联网、云计算等方式实现的,远比传统媒介的信息交换和传播速度快捷。大数据与海量数据的重要区别,除了大数据的数据规模更大以外,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4.价值性。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
大数据六大发展趋势
虽然大数据目前仍处在发展的起步阶段,尚存在着诸多的困难与挑战,但我们相信,随着时间的推移,大数据未来的发展前景非常可观。
1.数据将呈现指数级增长
近年来,随着社交网络、移动互联、电子商务、互联网和云计算的兴起,音频、视频、图像、日志等各类数据正在以指数级增长。据有关资料显示,2011年,全球数据规模为1.8ZB,可以填满575亿个32GB的iPad,这些iPad可以在中国修建两座长城。到2020年,全球数据将达到40ZB,如果把它们全部存入蓝光光盘,这些光盘和424艘尼米兹号航母重量相当。美国互联网数据中心则指出,互联网上的数据每年将增长50%,每两年便将翻一番,目前世界上90%以上的数据是最近几年才产生的。
2.数据将成为最有价值的资源
在大数据时代,数据成为继土地、劳动、资本之后的新要素,构成企业未来发展的核心竞争力。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。IBM执行总裁罗睿兰认为指出,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”随着大数据应用的不断发展,我们有理由相信大数据将成为机构和企业的重要资产和争夺的焦点谷歌、苹果、亚马逊、阿里巴巴、腾讯等互联网巨头正在运用大数据力量获得商业上更大的成功,并且将会继续通过大数据来提升自己的竞争力。
3.大数据和传统行业智能融合
通过对大数据收集、整理、分析、挖掘, 我们不仅可以发现城市治理难题,掌握经济运行趋势,还能够驱动精确设计和精确生产模式,引领服务业的精确化和增值化,创造互动的创意产业新形态。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。网络、阿里、腾讯等通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。在智慧城市建设不断深入的情况下,大数据必将在智慧城市中发挥越来越重要的作用。由城市数字化到智慧城市,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术,大数据将成为智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧医疗、智慧教育、智慧交通、智慧城管等,无不是大数据和传统产业融合的重要领域。
4.数据将越来越开放
大数据是人类的共同资源、共同财富,数据开放共享是不可逆转的历史潮流。随着各国政府和企业对开放数据带来的社会效益和商业价值认识的不断提升,全球必将很快掀起一股数据开放的热潮。事实上,大数据的发展需要全世界、全人类的共同协作,变私有大数据为公共大数据,最终实现私有、企业自有、行业自有的全球性大数据整合,才不至形成一个个毫无价值的“数据孤岛”。大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。目前,美欧等发达国家和地区的政府都在政府和公共事业上的数据做出了表率。中国政府也将一方面带头力促数据公开共享,另一方面,还通过推动建设各类大数据服务交易平台,为数据使用者提供丰富的数据来源和数据的应用。
5.大数据安全将日受重视
大数据在经济社会中应用日益广泛的同时,大数据的安全也必将受到更多的重视。大数据时代,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术最大限度地收集更多有用信息,对其感兴趣的目标发起更加“精准的”攻击。近年来,个人隐私、企业商业信息甚至是国家机密泄露事件时有发生。对此,美欧等发达国家纷纷制定完善了保护信息安全、防止隐私泄露等相关法律法规。可以预见,在不久的将来,其他国家也会迅速跟进,以更好地保障本国政府、企业乃至居民的数据安全。
6.大数据人才将备受欢迎
随着大数据的不断发展及其应用的日益广泛,包括大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等在内的具有丰富经验的数据分析人员将成为全社会稀缺的资源和各机构争夺的人才。据著名国际咨询公司Gartner预测,2015年全球大数据人才需求将达到440万人,而人才市场仅能够满足需求的三分之一。麦肯锡公司则预测美国到2018年需要深度数据分析人才44万—49万,缺口为14万—19万人。有鉴于此,美国通过国家科学基金会,鼓励研究性大学设立跨学科的学位项目,为培养下一代数据科学家和工程师做准备,并设立培训基金支持对大学生进行相关技术培训,召集各个学科的研究人员共同探讨大数据如何改变教育和学习等。英国、澳大利亚、法国等国家也类似地对大数据人才的培养做出专项部署。IBM 等企业也开始全面推进与高校在大数据领域的合作,力图培养企业发展需要的既懂业务知识又具分析技能的复合型数据人才。(武锋:国家信息中心)
❹ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
❺ 大数据是什么
大数据是什么意思呢?
如果从字面意思来看,大数据指的是巨量数据。那么可能有人会问,多大量级的数据才叫大数据?不同的机构或学者有不同的理解,难以有一个非常定量的定义,只能说,大数据的计量单位已经越过TB级别发展到PB、EB、ZB、YB甚至BB级别。
最早提出“大数据”这一概念的 是全球知名咨询公司麦肯锡,它是这样定义大数据的:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型以及价值密度低四大特征。
研究机构Gartner是这样定义大数据的:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流转优化能力来适应海量、高增长率和多样化的信息资产。若从技术角度来看,大数据的战略意义不在于掌握庞大的数据,而在于对这些含有意义的数据进行专业化处理,换言之,如果把大数据比作一种产业,那么这种产业盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
❻ 什么是大数据 大数据是什么意思
通俗来讲,大数据就是所有数据整合在一起,并且比以往数据库都要庞大的一个数据库。从学术上来讲,大数据就是在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,并且具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
(6)什么是政府大数据扩展阅读
大数据相关政策
经李克强总理签批,2015年9月,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),系统部署大数据发展工作。
《纲要》明确,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
《促进大数据发展行动纲要》部署三方面主要任务
1、加快政府数据开放共享,推动资源整合,提升治理能力。大力推动政府部门数据共享,稳步推动公共数据资源开放,统筹规划大数据基础设施建设,支持宏观调控科学化,推动政府治理精准化,推进商事服务便捷化,促进安全保障高效化,加快民生服务普惠化。
2、推动产业创新发展,培育新兴业态,助力经济转型。发展大数据在工业、新兴产业、农业农村等行业领域应用,推动大数据发展与科研创新有机结合,推进基础研究和核心技术攻关,形成大数据产品体系,完善大数据产业链。
3、强化安全保障,提高管理水平,促进健康发展。健全大数据安全保障体系,强化安全支撑。
参考资料来源:网络--大数据
❼ “互联网+政务服务”大数据是什么意思
“互联网+政务服务”指的是利用互联网,实现政府部门间数据共享,群众可以通过网络平台完成办理事项,都可通过一体化政务服务平台享受到网上预约、网上申请、网上查询、咨询投诉等相关服务,真正实现政务服务“一网通办”。
让居民和企业少跑腿、好办事、不添堵。简除烦苛,禁察非法,使人民群众有更平等的机会和更大的创造空间。
推进“互联网+政务服务”,是贯彻落实党中央、国务院决策部署,把简政放权、放管结合、优化服务改革推向纵深的关键环节,对加快转变政府职能,提高政府服务效率和透明度,便利群众办事创业,进一步激发市场活力和社会创造力具有重要意义。
(7)什么是政府大数据扩展阅读:
国务院出台《“互联网+政务服务”技术体系建设指南》
《“互联网+政务服务”技术体系建设指南》(以下简称《建设指南》),通过加强顶层设计,对各地区各部门网上政务服务平台建设进行规范,优化政务服务流程,推动构建统一、规范、多级联动的全国一体化“互联网+政务服务”技术和服务体系。
《建设指南》针对一些地区和部门当前网上政务服务存在的服务不便捷、平台不互通、数据不共享、线上线下联通不畅、标准化规范化程度不高等问题.
在总结相关地方部门政务服务平台建设经验基础上,按照“坚持问题导向、加强顶层设计、推动资源整合、注重开放协同”的原则,以服务驱动和技术支撑为主线,针对企业和群众反映的办事难、审批难、跑腿多、证明多等突出问题,提出了优化网上政务服务的解决路径和操作方法。
《建设指南》重点从四个方面明确了“互联网+政务服务”技术体系的具体要求。
1.业务支撑体系。推动政务服务事项清单标准化、办事指南规范化、审查工作细则化、业务办理协同化、事项管理动态化,着力优化网上政务服务流程,深化并联审批,加强事中事后监管,促进政务服务向乡(镇)、村(街道)延伸,打通政务服务“最后一公里”。
2.基础平台体系。规范网上政务服务平台建设,避免线上线下政务服务“两张皮”。整合构建统一的数据共享交换平台,推进跨部门、跨地区、跨层级平台互通、身份互信、证照互用、数据共享、业务协同,实现异地办理、同城通办、就近办理。
3.关键保障技术体系。着眼统一用户认证、电子证照、电子文书、电子印章等关键支撑技术,以及运行管理、安全保障等关键保障技术,深化政务云、大数据等新技术应用,完善“互联网+政务服务”配套支撑体系。
4.评价考核体系。积极运用第三方评估手段组织开展政务服务评估评价,以评价考核为手段促进各地区各部门不断提升政务服务水平。
❽ 什么是大数据
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 [19]
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。 [3]
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 [4]
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。 [1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
❾ 什么是大数据
什么是大数据及应用?大数据即为海量数据。人类生活在三维空间中,一草一木,一山一水,人类活动的行为轨迹,都能用数据来表达。如企业的生产运营,商品标准。政府的管理决策,消费者的消费水平,消费习惯。地理环境的一条公路,一条河流等等。每方面都有每方面的大数据。每个行业都有每个行业的大数据。通过各企业,行业,社会主体等等数据的集成。形成了概念更大,更有价值的大数据流。通过宇宙万物是互联的原理。以及逻辑关系的分析。能够得到。关于社会治理,企业运营,个人服务的便捷可靠,真实的服务方案。一件事物的组成并非由单一因素组成。由多方组合或者协同完成的。一件衣服的完成,要有生产布料的厂家,制衣厂家,制扣厂家,制线厂家,设计方,工人加工等等环节组合而成。大数据也是如此。大数据应用也是如此。人类刚刚迈入数字经济时代。既为以数据为生产资料的时代。谁能掌握大数据以及大数据的应用?更好地服务于人类社会。谁就占据了未来财富以及地位的制高点。中国战略性新兴产业联盟河北唐冠众兴科技有限公司毕绍鹏回答