导航:首页 > 网络数据 > 大数据主义

大数据主义

发布时间:2023-08-05 13:34:55

大数据分析:从感性决策到理性决策

大数据分析:从感性决策到理性决策

自人类有史以来,从未像现在这样积累如此多的数据,也从未如此繁重的数据分析工作。我们都知道,挖掘大数据背后的价值能给的决策带来预测和指导,但是如何挖掘数据、掌控数据,就成了摆在眼前的难题,

价值隐藏于数据之后

在商业活动中,无时无刻不在产生大量的数据。但大多数时候,这些数据是零散的、不规律的,这就是我们常说的原始数据。原始数据本身并不具备价值,需要对其进行整合和进一步处理才能得到我们想要的数据。

无数案例的经验告诉我们,具有决策指导意义的数据就隐藏在这些看起来杂乱无章的数据之中。大数据对于未来的预见性和科学性使得这些数据具有价值,我们分析大数据其实就是想要得到能够“预见未来”能力。

大数据分析与科学决策

在过去的商业决策中,管理者凭借自身的经验和对行业的敏感来决定企业发展方向和方式,这种决策有时候仅仅参考一些模糊的数据和建议。而大数据和大数据分析工具的出现。让人们找到了一条新的科学决策之路。

大数据主义者认为,所有决策,都应当逐渐摒弃经验与直觉,并且加大对数据分析的倚重。相对于全人工决策,科学的决策能给人们提供可预见的事物发展规律,不仅让结果变得更加科学、客观,在一定程度上也减轻了决策者所承受的巨大精神压力。

大数据分析工具,科学决策指南针

在大数据分析工具出现之前,参与决策指导的数据一般都是人工分析得出的。科学的决策需要科学的数据,人工分析数据并不能保证数据的绝对真实和客观。这意味着在大数据分析工具的使用中,数据必须确保真实与可靠。

国内有些数据分析工具在性能上已经能比肩国外同类技术。国云数据的新锐产品大数据魔镜,作为国内领先的数据分析工具,能为用户提供完整的数据分析。随着数据市场和云BI等功能的开放,大数据魔镜有望成为新的数据分析平台。

大数据价值体现在服务人类,大数据和大数据分析工具都是为人服务的,这在大数据魔镜的功能中被体现地淋漓尽致——人性化、智能化服务于用户。数据分析工具的作用取决于人们的需要,而不是数据本身。

在大数据的帮助下,我们将会越来越清晰地看到这个世界的本来面目,也会越来越清晰地认识人类自身。而大数据分析工具,就是探索大数据与现实世界之间联系的放大镜和启明灯!

以上是小编为大家分享的关于大数据分析:从感性决策到理性决策的相关内容,更多信息可以关注环球青藤分享更多干货

❷ 领导干部应关注大数据治理的哪些理念

总的来说,我们认为,领导干部大数据思维方式的建立是一个循序渐进的过程。
需从“经验主义”向“数据主义”决策转变,真正认识到数据的价值。先抛开大数据的概念不提,我们国家的政府信息化和电子政务系统已经实施了很多年,各政府部门也积累了大量关系国计民生的数据,但政府部门的领导干部在决策的过程中往往还是“经验主义”主导,甚至不少领导不知道本部门有哪些数据,数据放在哪里。因此,领导干部首先需要了解自己本部门的数据状况,这些数据目前有哪些主要的应用场景,已经为本部门管理水平和公共服务能力的提升发挥了哪些作用,是否曾经共享给其他兄弟部门以发挥更大的价值等基本问题。另外,还需对数据的价值和作用有基础理解,有意识地提升数据支持决策的能力。
以利他分享的大数据思维思考政府数据共享开放。目前很多政府部门的数据实际上是处于信息孤岛状态,数据由于没有与其他部门进行共享,也没有实现开放,使得数据的价值发掘非常有限。而且,很多政府部门的领导把自己部门的数据看作是部门利益的基础,认为数据的共享开放输出就意味着利益的输出,这种现象在数据能力强的部门体现得尤为明显。领导干部需要认识到,部门的数据如果不流动起来,不与其他的外部数据进行融合,就会成为死数据,而真正发挥价值的是活数据。数据的外部性说明数据的价值不是只存在于内部,站在更高的层次和角度考虑政府数据共享才能使得数据的价值最大。
不少领导干部以政府数据的安全为由,或多一事儿不如少一事儿的心理,对政府数据开放持拒绝或者消极态度。纵观国外政府数据开放的历程,基本是从信息公开起步,在数据开放方面本着“开放为默认,不开放为特例”的原则,才使得数据开放成为建设智慧城市或智慧政府的重要基础。需要认识到政府的数据开放其实是在利用社会力量实现政府治理现代化的目标,因此,把与民生相关的、经过脱敏的政府数据开放给民众以及企业,会促进基于大数据的创新创业发展,也才能让数据通过流动和融合,发挥更大的社会和经济价值。
在服务型政府创建过程中,大数据对于政府提升管理效率、科学决策能力和公共服务水平都能够起到关键作用。服务型政府的愿景是政府能够为百姓提供互动、主动、有效的个性化公共服务,而大数据正是提供智慧服务的基石,尤其在智慧城市建设中起的作用最为显著。领导干部需要从这些目标中总结大数据所起到的价值和作用,有的放矢地开展大数据相关项目规划和实施。
为适应大数据时代的治理需求,领导干部的思维模式需实现自上而下为主向自下而上为主的转变,数据化决策、管理、服务和创新的能力亟需进一步提升。各级领导干部对大数据的认识不能仅局限在概念和产业吸引投资上,而是需要在推动政府治理创新上有更深层次的理解,唯此才能真正促进我国政府治理现代化的进程。

❸ 大数据都体现在哪些方面

1、大数据正在改善我们的生活
大数据不单单只是应用于企业和政府,同样也适用我们生活当中的每个人。比如说一个比较基础的点,就是我们可以利用穿戴的装备(如智能手表或者智能手环)生成最新的数据,这让我们可以根据我们热量的消耗以及睡眠模式来进行追踪。
2、业务流程优化
大数据还会更多的帮助业务流程的优化。我们可以通过利用社交媒体数据、网络搜索以及天气预报等等去挖掘出大量的有价值的数据,其中大数据的应用最广泛的就是供应链以及配送路线的优化。从这两个方面,地理定位和无线电频率的识别追踪货物和送货车,利用实时交通路线数据制定更加优化的路线。
3、理解客户、满足客户服务需求
大数据的应用目前在这领域是最广为人知的。重点是如何应用大数据更好的了解客户以及他们的爱好和行为。企业非常喜欢搜集社交方面的数据、浏览器的日志、分析出文本和传感器的数据,为了更加全面的了解客户。在一般情况下,建立出数据模型进行预测。举一个比较简单的例子就是通过大数据的应用,电信公司可以更好预测出流失的客户,沃尔玛则会更加精准的预测哪个产品会大卖,汽车保险行业会了解客户的需求和驾驶水平,政府也能了解到选民的偏好。
4、提高医疗和研发
大数据分析应用的计算能力可以让我们能够在几分钟内就可以解码整个DNA。并且让我们可以制定出最新的治疗方案。同时可以更好的去理解和预测疾病。就好像人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。这样可以帮助医生更好的救助婴儿。
5、金融交易
大数据在金融行业主要是应用金融交易。高频交易(HFT)是大数据应用比较多的领域。其中大数据算法应用于交易决定。现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。
6、改善我们的城市
大数据还被应用改善我们日常生活的城市。例如基于城市实时交通信息、利用社交网络和天气数据来优化最新的交通情况。目前很多城市都在进行大数据的分析和试点。
7、改善安全和执法
大数据现在已经广泛应用到安全执法的过程当中。想必大家都知道美国安全局利用大数据进行恐怖主义打击,甚至监控人们的日常生活。而企业则应用大数据技术进行防御网络攻击。警察应用大数据工具进行捕捉罪犯,信用卡公司应用大数据工具来槛车欺诈性交易。

❹ 大数据观念 决策当摒弃经验与直觉

大数据观念:决策当摒弃经验与直觉

据统计,人类历史上90%的数据,都在过去的两年中产生;今天,数据世界已经增至4.4亿万亿字节,如果将这些庞大的信息量存储在苹果iPad平板电脑中,叠加起来的iPad平板电脑,其厚度相当于地球到月球距离的2/3,这或可意味着人类已进入大数据时代。
蒸汽机的发明,使煤、石油成为推动工业革命的重要原材料;现在,计算机的发明和联网,将使大数据成为推动信息革命的重要原材料。美国作者史蒂夫·洛尔在《大数据主义》一书中,解释了大数据技术将如何引发一场新的革命,并告诉我们:大数据将在哪些领域大放异彩,又在哪些领域需要保持警惕,以及大数据将把我们带向何方?
让大数据大放异彩的领域
大数据应用于很多领域、行业,同时,它还会改变人类的决策方式。大数据主义者认为,所有决策,都应当逐渐摒弃经验与直觉,并且加大对数据分析的倚重。
让我们来看一下美国的药品销售企业麦克森公司的案例:在经营活动中,麦克森公司产生了庞大的数据,IBM公司利用这些数据,为麦克森公司建立了决策模拟模型。借助这个模型,麦克森公司可以完成更精准的预测和更高明的决策。麦克森公司经营的一些药品如抗癌药品和专用抗生素等,价格极高,需求极不稳定,麦克森公司以前的做法是:靠“猜测法”在几个分销中心都储备这类药品,再根据需要调货。通过IBM建立的决策模拟模型得知,尽管空运成本是卡车运送成本的10倍,但如果把这些药品全部储存在孟菲斯郊区的中心仓库,再空运给客户,这些昂贵药品的库存会降低1/2,节省的成本,用于支付高昂的空运费还有结余,并且这些药品的按时送达率,会由以前的80%上升到99%。最终,麦克森公司通过对大数据的应用,将库存成本降低了10亿美元,效率提高了约13%。
大数据在商品零售业也有光明的前景。世界零售业巨头沃尔玛,通过大数据统计与分析,发现男性顾客在购买婴儿尿片时,常常会顺便买上几瓶啤酒,于是,他们推出将啤酒和尿片捆绑销售的促销活动,非常有效地提高了啤酒销量。另外,沃尔玛在挖掘历史采购数据时发现,在预报有飓风通过的地区,消费者购买草莓果酱馅饼的数量是平时的7倍,而飓风到来之前,最畅销的商品是啤酒。于是,他们在飓风警报到来时,已经储备下足够的草莓果酱馅饼和啤酒,这样既充分满足了顾客需要,又获得了较好的销售业绩。
《大数据主义》一书中诸多案例告诉我们,现在及将来,那些价格越来越低廉的电脑与软件,再加上越来越开放、高效的网络,将意味着更多的企业参与到应用大数据的方法中来,提高效益或制定战略。
大数据的“黑洞”
当然,大数据在带给人们便利的同时,也隐藏着一个巨大的“黑洞”——安全问题。例如,美国最大的数据代理商,是总部位于阿肯色州小石城的安客诚公司,该公司已搜集了数亿名消费者的数据。该公司宣称,他们通过官方档案、购物数据、网上浏览习惯等渠道,归纳了消费者的大量信息,从而得出大多数美国成年人的相关数据,比如人们的年龄、种族、性别、党派、对度假的期望等,其深入细致程度是美国政府和其他互联网企业所无法比拟的。安客诚是向企业提供消费者信息的杰出供应商,也同时成为隐私权倡导者们最讨厌的对象之一。通过技术获取最大利益的同时,如何保护好人们的隐私权?怎样找到合适的平衡点?这是需要人类认真思考的重大问题。
到目前为止,“怎样才能将隐私方面的风险降至最低?”还没有明确的答案,但已形成了两个泾渭分明的阵营。一个自称“开明商业群体”的阵营认为:数据是一种资产,是信息经济的流通货币,因此数据像钱一样,只有自由流通才能创造最大的价值;他们主张,在制定保护隐私的规则时,关注点应该是“数据的使用”,而不是“数据的收集”。但是,“消费者与隐私权倡导者”阵营对仅通过限制数据使用来保护隐私权,表示怀疑和反对。
阿莱克斯·彭特兰,是麻省理工学院媒体实验室的一个团队负责人,目前,他的团队正在开展隐私权项目的研究和实验。他竭力主张“新型数据交易”,其中包含三个基本原则:“你有权拥有你自己的数据,有权管控这些数据的使用,有权选择你认为合适的方式销毁或发布这些数据。”2014年,奥巴马政府的大数据报告也再次呼吁,应当按照彭特兰提议的原则,加强对消费者数据的管控。与此同时,开发应用于数据管理的隐私保护工具,也成为一个重大的商机。
该书作者还从更宏大的视角,来观察大数据。他深刻地指出:如同宇宙大爆炸般飞速扩张的“数据世界”,不仅日益成为外在客观物质的“镜像”,而且正越来越多地包含人类自身行为的追踪和记录,成为人类观察和认识自我的一面“大镜子”。在大数据的帮助下,我们将会越来越清晰地看到这个世界的本来面目,也会越来越清晰地认识人类自身

❺ 大数据重要的意义

什么是大数据,大数据的意义是什么?
大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
什么是大数据,大数据为什么重要,如何应用大数据
空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。
大数据的意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。 阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。 有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。 大数据的价值体现在以下几个方面:1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销2) 做小而美模式的中长尾企业可以利用大数据做服务转型3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。3)分析所有SKU,以利润最大化为目标来定价和清理库存。4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。5)从大量客户中快速识别出金牌客户。6)使用点击流分析和数据挖掘来规避欺诈行为。
什么是大数据,大数据为什么重要,如何应用大数据
读读这本书吧。。

驾驭大数据 驾驭未来

大数据的流行,也引发了图书业大数据出版题材的升温。去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国 *** 的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。

该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!

大数据重要以及不重要的一面

与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。

网络数据与电子商务

对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。

一些有价值的应用场景

大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手......
大数据的到来对我国经济发展有什么意义
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。

有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。

大数据的价值体现在以下几个方面:

1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销;

2) 做小而美模式的中长尾企业可以利用大数据做服务转型;

3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
互联网大数据有哪些好处多
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。

现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。

通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。

大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。

以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。

为什么使用大数据?

数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。

现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。

更完整的解析

大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。

现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。

类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。

大数据是什么?

由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:

量级(Volume):大量的数据

速率(Velocity):高速的数据产出

多样性(Variety):多种类型和来源的数据。

正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:

网站分析

移动分析

设备/传感器数据

用户数据(CRM)

统一的企业数据(ERP)

社交数据

会计系统

销售点系统

销售体系

消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)

公司内部电子表格

公司内部数据库

位置数据(空间位置、GPS定位的位置)

天气数据

但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。

想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。

大数据的好处

大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......
什么是“大数据”的真正含义
大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据给人们带来的好处
对一般用户来说意义不大,对于药店、药厂有必要了解用户的需求,但是如果真的利用起来能给用户带来选药的便利还是很有用的。比如当你生病不知道选哪种药好的时候,根据循证医学原理能帮你找到合适的药这样也算是带来了好处。
工业大数据对中国有什么意义
工业大数据可以推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂,推动制造模式变革和工业转型升级

国家下一步将利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,研发面向不同行业、不同环节的大数据分析应用平台,选择典型企业、重点行业、重点地区开展工业企业大数据应用项目试点,积极推动制造业网络化和智能化。在应用项目试点过程中,需要开展应用示范安全可靠性方面的测评,利用大数据测试技术、工业电子系统测试技术和工业云测试技术,保障工业企业大数据应用项目试点的稳步推进,中国软件评测中心在相关方面有较深厚的技术积累和案例积累,可以为我国工业大数据发展保驾护航。
大数据的特点主要有什么?
大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。

大数据的特点:

1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;

2、种类(Variety):数据类型的多样性;

3、速度(Velocity):指获得数据的速度;

4、可变性(Variability):妨碍了处理和有效地管理数据的过程。

5、真实性(Veracity):数据的质量

6、复杂性(plexity):数据量巨大,来源多渠道

大数据的意义:

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。

大数据的缺陷:

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。” 这确实是需要警惕的。

❻ 大数据主义者如何看待理论,因果与规律

大数据的兴抄起,给传统的科学哲学带来许多新挑战,特别是对诸如科学理论的作用、因果关系、科学规律等科学哲学的核心问题提出了有别于传统的新观点。齐磊磊博士概括总结了大数据相关学者的论述,在《哲学动态》杂志发表了题为《大数据经验主义——如何看待理论、因果与规律》的重要文章[1]。她在文中提出了大数据经验主义的概念,并系统提炼了大数据经验主义的科学哲学观点,这是大数据哲学的重要提炼和概括。她认为,大数据经验主义是一种新经验主义(以下简称为大数据主义),并将其观点概括为三点:1.在科学理论问题上,大数据主义认为“理论已经终结”,否定科学理论对科学发现的作用;2.在关系到科学存亡的因果性问题上,大数据主义否定因果性的存在,提出由相关性取代因果性;3.在世界的本质问题上,大数据主义否定世界的规律性,认为世界的本质是混乱的。树立起大数据主义的靶子之后,齐磊磊进行了批判,并明确提出反对大数据主义对大数据的神化。

❼ 大数据的边界和大数据生存法则

大数据的边界和大数据生存法则

“大数据”的汹涌澎湃,让人们逐渐意识到,由此带来的,极有可能是一场发生在几乎所有领域的颠覆性革命。只是,虽然坊间有关大数据的论著很多,但敢于将这种趋势上升到“主义”高度的,恐怕非史蒂夫·洛尔莫属。身为在《纽约时报》撰稿长达二十余年的非虚构写作者和资深记者、编辑,因为长期从事数据科学报道,洛尔早在十多年前就敏锐地感受到“大数据”即将给人类带来的变化。而眼前的这本《大数据主义》,不同于此前的大多数同类论著的动人之处在于,它以一个在数据分析行业找到人生价值的年轻人、曾为脸谱网建立了最初的数据科学家团队的哈佛毕业生杰夫·哈梅巴赫的经历,以及人类数据时代的标杆——IBM公司的大数据生存法则为主线,在叙事中又穿插了大量相关人物的故事和观点,勾勒出了近几年大数据浪潮对人类生活诸多方面的深刻影响。

早在2012年初,史蒂夫·洛尔便先知先觉地以“大数据主义”为题,在《纽约时报》“周日评论”板块发表了一篇社论,网站点击量激增,很多读者还写了关于这篇文章的评论。《大数据主义》便是对上述主题进一步挖掘的成果。

杰夫·哈梅巴赫,这位曾在华尔街这个聪明人汇集的行业做金融数据分析,之后又加盟脸谱网,在从事数据科学研究的同时也为自己的人生赢得了财务自由。离开脸谱网后,他自己创办了一家名为Cloudera的公司,自任首席科学家,编写用于数据科学研究的软件。2012年夏天,年仅28岁的哈梅巴赫又转战医疗业,加入纽约西奈山伊坎医学院,领导一个数据小组,从事遗传信息的研究,为探索疾病模型的建立方法和治疗手段寻找突破口,这是他认为的目前能将数据科学研究投入应用的最佳途径。而作为一家有着上百年历史的科技巨头,IBM对数据技术的进展同样甚为关注,他们在较早时候就组建了研究团队,制定了战略方针,投入了大量资金,招募大批该领域的专家,团队人数至今已达2000人。其首席执行官甚至告诉洛尔:“我们把整个公司的前途都押在了大数据技术的应用上。”

大数据生存法则

自1946年计算机问世以来,便不可逆转地加速改变着人类的生活方式和进程。时至今日,海量存在于互联网及其他各处、能被人们获取的信息,早已由千字节(KB)、兆(MB)、千兆(GB)、太字节(TB),跃升为拍字节(PB)、艾字节(EB)、泽字节(ZB),乃至尧字节(YB)。据测算,如果将人类现存的信息全部汇集并存贮起来,需要用到的ipad,叠加起来的厚度可绕地球三分之二圈。正是这惊人的数据总量,使人类在处理信息时能经历从量变到质变的过程,就如同物质到了纳米级别,各种原有的特性都会发生惊人的突变,“大数据”概念的诞生,正是数据存量不断累积的必然结果。

面对不断生成的各种数据,尤其同一个系统或平台上生成的数据,尽管以人类的大脑很难理清它们相互之间的关系,对这些数据得以如此产生的前因后果更无法给出合乎逻辑的解释,但它们之间确实存在着一定的相关性。尽管以人类现有的理解能力看来,这种相关性并不十分清晰,甚至有几分神秘,但通过总结这一系列数据之间的生成规律,人们仍然可以比过去更为有效地决策,而不是像过去通常所做的那样,依靠个人直觉或是一些只可意会不可言传的经验来做出某个重要决定。因此,许多在过去看来无用的数据,今日都“变废为宝”了。举例来说,世界最大零售商沃尔玛通过对大数据统计和研究发现,男性顾客在购买婴儿尿片时,通常会顺便买上几瓶啤酒。尽管商家不知其中缘由,但还是果断推出了啤酒与尿布捆绑销售的促销方式,提升了啤酒销量。由此看来,正是大数据带来的定量分析方法,为人们的决策带来了新的参考依据。作为一种创新工具,它还催生了大量相关技术,如社交媒体、传感器信号、基因组信息等,不仅有利于经济增长,还可以帮助我们重塑构建世界的方式,甚至在一定程度上改变我们世界观。

尽管大数据技术刚刚起步,但如今可涵盖的应用领域已十分广泛:从挖掘数据帮助企业经营决策,到对社交媒体用户展开细致入微的数据分析,提高网站的广告点击率;从利用大数据培育性能前所未有的智能机器人,到推动一些传统产业的升级换代。此外,还有更为性命攸关的医疗行业的“大数据革命”。例如有人提出,许多慢性疾病并非个体基因引起,而是一种复杂的网络性紊乱,涉及从分子、细胞、组织、器官到人类社群的各个环节。因此他们将一组涉及年龄、病史、生活方式和环境等可能影响疾病的发生发展因素,通过复杂的数学模型,全部转化为数字,以便试验性地检测一个人三年内患上某种疾病的可能性。尽管从定量分析角度看,精密科学,如物理学、化学等学科更为成熟,预测结果也更准确,但人们仍在努力引导医疗行业向定量分析的方向发展,而非仅仅依靠经验对人的健康状况定性。

在美国某些研究机构中,大数据应用几乎可协助建立人类行为模型,帮助人们了解自身各种行为之间的关联关系,那些不曾为人所知的人类行为的奥秘也将慢慢得到破解。

另一个很有意思的例子,发生在IBM公司研制的智能机器人沃森身上。这个“人”在《危险边缘》节目中高超的信息处理速度,战胜了面对人类对手战无不胜的超级挑战者,令人想起当年深蓝战胜棋王卡斯帕罗夫的故事。似乎显得巧合的是,深蓝的发明者,同样是IBM公司,如今它又一次以辉煌战绩证明了在人工智能领域的领先地位,所不同的是,这次的胜利,离不开大数据技术的鼎力相助。

在IBM沃森实验室召开的一次学术会议上,人工智能专家希利斯更提出了一个极具前瞻性的观点:“机器人必须学会讲故事。”在希利斯看来,如果一个计算机系统只会提供答案,而不会“思考”和“解释”问题,那么无论运算速度多快,都不会有突破性的前景。这里所说的“讲故事”,其实就是在软件糅合数据、想法、推断,并形成决策时,对整个过程实施跟踪,让人们在使用过程中和过后都能知道计算机是如何一步一步完成其工作的。给出这样的解释,就能让人们知道机器人与我们之间的关系,也就是弄清楚,在整个决策过程中,有哪些部分工作是机器人完成的,有哪些是由人类所做的。

大数据真果真无懈可击?

既然如此神奇,大数据技术及其应用岂不是理应被当代渴望进步、增长的人们顶礼膜拜·史蒂夫·洛尔并不这样认为。大数据技术的应用,仅从其可靠性而言,就亟待改进。在近年来一些大公司的错误经营行为中,常常可找到大数据应用的影子。此外,伴随大数据技术渗透进人们生活的,还有个人隐私被泄露的风险。无论社交网络的使用,还是各种随身软件中内置的定位装置,甚至连个人的基因信息,都会在人们并不知情的情况下,被大数据拥有者有意或无意地获取,从而令个人信息的保护程序受到严重威胁。

这方面最典型的例子还要数安客诚公司。这家全美最大的数据代理商,在全球范围内收集了数亿名消费者的相关数据。这些公开或推断所得的信息包括年龄、种族、性别,党派,以及诸如对度假的期待、对健康的关注程度等非客观信息。在将这些数据归纳之后,这家网站就可轻易推断出大多数美国成年人在这些项目上的相关数据,其深入细致的程度无人可及。《纽约时报》的一位评论员甚至写道:“访问者登录之后就会发现,该网站不仅有大量与自己有关的信息,甚至还有描述详细的私生活,面对这种情况,他们可能会大吃一惊。”面对这种对个人隐私的严重侵犯,除了少数民间的隐私权倡导者提出抗议之外,无论从法律或技术层面,至今仍没能设计出有效的预防措施加以制止。

更为本质的问题还在于:尽管很多大型现代企业早已进入了“无法计量就无法管理”的时代,但在人类生活的其他方面,仍有许许多多重要的东西无法只用数据就可以说明或解决的。事实上,至少迄今为止,几乎所有能赋予我们的生活以终极意义的东西,如情感、信仰、人与人之间的爱,还有个体自身庄严阔大的精神世界,都绝不可能以数据来涵盖或表达。因此单纯的数据崇拜并非福音,面对人类生活的无数复杂微妙之处,任何形式的“大数据决策”,都有必要用谦卑来调和,以免误入歧途。

以上是小编为大家分享的关于大数据的边界和大数据生存法则的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与大数据主义相关的资料

热点内容
大量数据如何导入oracle数据库 浏览:194
网络的结构特点 浏览:885
蓝灯怎么加代码 浏览:695
java事务管理 浏览:124
地图gps折腾工具 浏览:723
安卓文件到桌面 浏览:45
plc编程浮点数是什么 浏览:93
如何用word2003制作红头文件 浏览:482
什么离线编程仿真软件好 浏览:506
网络认证系统有哪些功能 浏览:913
女人看的app 浏览:207
备份到网盘里的文件在哪里查 浏览:807
鸿蒙系统带病毒的app怎么安装 浏览:35
iphone6sp发货问题 浏览:197
手机迅雷BT文件已移除 浏览:766
文泰保存文件怎么找不到 浏览:608
苹果账号没有充值买了东西吗 浏览:358
汇编中数据在内存中如何分布 浏览:308
数据库单用户模式 浏览:681
c生成utf8格式文件 浏览:40

友情链接