① 大数据培训课程都包含哪些内容
老男孩教育的大数据培训课程内容包括:Java、Linux、内Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python与大数据容分析等
② 大数据培训课程大纲要学什么课程
课纲不一样,看是大数据开发还是大数据分析了,我学的大数据分析可视化,学的版主要权有Python入门、sql、oracle、tableau、帆软、Informatica、Excel等等
我刚出来半年,视频录播可能还不算落后,有视频可***
③ 大数据培训什么
第一阶段
Java
语言基础
01Java
开发介绍
02
熟悉
Eclipse
开发工具
03Java
语言基础
04Java
流程控制
05Java
字符串内
06Java
数组与类和对象
07
数字处理类容与核心技术
08I/O
与反射、多线程
09Swing
程序与集合类
第二阶段
HTML
、
CSS
与
JavaScript
01PC
端网站布局
02HTML5+CSS3
基础
03WebApp
页面布局
04
原生
JavaScript
交互功能开发
05Ajax
异步交互
06JQuery
应用
第三阶段
JavaWeb
和数据库
④ 大数据培训课程大纲去哪里学
大数据开发工程师课程体系——Java部分。
第一阶段:静态网页基础
1、学习Web标准化网页制作,必备的标记和属性
2、学习HTML表格、表单的设计与制作
3、学习CSS、丰富HTML网页的样式
4、通过CSS布局和定位的学习、让HTML页面布局更加美观
5、复习所有知识、完成项目布置
第二阶段:JavaSE+JavaWeb
1、掌握JAVASE基础语法
2、掌握JAVASE面向对象使用
3、掌握JAVASEAPI常见操作类使用并灵活应用
4、熟练掌握MYSQL数据库的基本操作,SQL语句
5、熟练使用JDBC完成数据库的数据操作
6、掌握线程,网络编程,反射基本原理以及使用
7、项目实战 + 扩充知识:人事管理系统
第三阶段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握注解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、项目实战+扩充知识:项目案例实战
POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4j/Slf4j
第四阶段:企业级开发框架
1、熟练掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离
以上Java课程共计384课时,合计48天!
大数据开发工程师课程体系——大数据部分
第五阶段:大数据前传
大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建
第六阶段:CentOS课程体系
CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练
第七阶段:Maven课程体系
Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练
第八阶段:HDFS课程体系
Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练
第九阶段:MapRece课程体系
MapRece深入剖析:执行过程详解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗详解、MapRece编程基础、MapRece编程进阶、MapRec阶段作业与实战训练
第十阶段:Yarn课程体系
Yarn原理介绍:框架组件流程调度
第十一阶段:Hbase课程体系
Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练
第十二阶段:MongoDB课程体系
MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练
第十三阶段:Redis课程体系
Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练
第十四阶段:Scala课程体系
Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练
第十五阶段:Kafka课程体系
Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练
第十六阶段:Spark课程体系
Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战
第十七阶段:Hive课程提体系
体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练
第十八阶段:企业级项目实战
1、基于美团网的大型离线电商数据分析平台
2、移动基站信号监测大数据
3、大规模设备运维大数据分析挖掘平台
4、基 于互联网海量数据的舆情大数据平台项目
以上大数据部分共计学习656课时,合计82天!
0基础大数据培训课程共计学习130天。
以上是我们加米谷的大数据培训课程大纲!
⑤ 大数据专业主要学什么课程
大数据专业需要学:数学分析、高等代数、普通物理数学与信息科迹晌数学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
大数据专业学什么课程
数据科学与大数据技术专业是通过对基础知识、理论及技术的研究,掌握学、统计、计算机等学科基础知识,数据建模、高效分析与处理,统计学推断的基本理论、基本方法和基本技能。具备良好的外语能力,培养出德、智、体、美、劳全面发展的技术型和全能型的优质人才。
数据科学与大数据技术的主要课程包括数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据姿首分析,部分高校的特色会有所差异。
通识类知识
通识类知识包括人文社会科学类、数学和自然科学类两部分。人文社会科学类知识包括经济、环境、法律、伦理等基本内容;数学和自然科学类知识包括高等工程数学、概率论与数理统计、离散结构、力学、电磁学、光学与现代物理的基本内容。
学科基础知识
学科基础知识被视为专业类基础知识,培养学生计算思维、程序设计与实现、算法分析与设计、系统能力等专业基本能力,能够解决实际问题。建议教学内容覆盖以下知识领域的核心内容:程序设计、数据结构、计算机组成操作系统、计算机网络、信息管理,包括核心概念、基本原理以及相关的基本技术和方法,并让学生了解学科发展历史和现状。
专业知识
课程须覆盖相应知识领域的核心内容,并培养学生将所学的知识运用于复杂系统的能力,能够设计、实现、部署、运行谨盯或者维护基于计算原理的系统。数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
大数据的就业前景怎么样
大数据行业就业前景很好,学过大数据之后可以从事的工作很多,比如研发工程师、产品经理、人力资源、市场营销、数据分析等,这些都是许多互联网公司需要的职位,而且研发工程师的需求也很大,数据分析很少。
大数据人才就业前景好还体现在薪酬水平高,大数据是目前薪酬高的行业之一,目前大数据人才已成为市场的稀缺资源,发展前景好,薪酬水平也水涨船高。
⑥ 大数据金融-第一章 大数据金融概论
1.大数据与小数据
2.大数据的内涵
(1) 数据类型方面
(2) 技术方法方面
(3) 分析应用方面
3.大数据的特征
多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。
时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。
价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。
4.大数据与传统数据的区别
5.大数据的产生背景
1.按照大数据结构分类
2. 按照大数据获取处理方式分类
3.按照其他方式分类
1.销售机会增多
0. 商业大数据的来源
1. 客户
2. 市场
3. 商品
4. 供应链
0. 数据来源
2. 市场与精准营销
3. 客户关系管理
4. 企业运营管理
5. 数据商业化
0. 数据来源
2. 付款定价
3. 研发
4. 新的商业模式
5. 公共健康
1. 营销
2. 服务
3. 运营
4. 风控
大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。
1. 呈现方式网络化
大量的金融产品和服务通过网络呈现。
2. 风险管理有所调整
风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。
风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。
对客户的评价 ——全方位、立体的/活生生的。
风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。
3. 信息不对称降低
4. 金融业务效率提高
在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。
5. 金融企业服务边界扩大
由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。
金融从业人员个体服务对象会更多。
6. 产品是可控的、可受的
通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。
7. 普惠金融
大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。
1. 放贷快捷,精准营销个性化服务
立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。
2. 客户群体大,运营成本低
大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。
3. 科学决策,有效风控
根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。
基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。
典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。
企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。
京东商城、苏宁易购是供应链金融的典型代表。
在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。
⑦ 大数据培训课程大纲要学什么
有些不是正规教程,选择正规地方学。魔据据说条件不错,但是还是要试听考察的。不管是否有基础学习都是没有问题的,主要看的是自身学习是不是用心,够不够努力,也可以去实际了解一下。