1. 2015年随着什么文件的发布中国正式启动大数据国家战略
法律分析:2015年,随着《促进大数据发展行动纲要》的发布,中国开始正式启动大数据国家战略,这一事件标志着发展大数据已经成为中国构建数据强国、推动大数据治国的一个必然选择。
法律依据:《促进大数据发展行动纲要》 一、发展形势和重要意义 全球范围内,运用大数据推动经济发展、完善社会治理、提升政府服务和监管能力正成为趋势,有关发达国家相继制定实施大数据战略性文件,大力推动大数据发展和应用。目前,我国互联网、移动互联网用户规模居全球第一,拥有丰富的数据资源和应用市场优势,大数据部分关键技术研发取得突破,涌现出一批互联网创新企业和创新应用,一些地方政府已启动大数据相关工作。坚持创新驱动发展,加快大数据部署,深化大数据应用,已成为稳增长、促改革、调结构、惠民生和推动政府治理能力现代化的内在需要和必然选择。
2. 大数据行业2015年年终总结_大数据工作人员年终总结
可参考下文
9个关键字写写大数据行业2015年年终总结
2015年,大数据市场的发展迅猛,放眼国际,总体市场规模持续增加,随着人工智能、物联网的发展,几乎所有人将目光瞄准了“数据”产生的价值。行业厂商Cloudera、DataStax以及DataGravity等大数据公司已经投入大量资金研发相灶配关技术,Hadoop供应商Hortonworks与数据分析公司NewRelic甚至已经上市。而国内,国家也将大数据纳入国策。
我们邀请数梦工场的专家妹子和你来聊聊2015年大数据行业九大关键词,管窥这一年行业内的发展。
战略:国家政策
今年中国政府对于大数据发展不断发文并推进,这标志着大数据已被国家政府纳入创新战略层面,成为乱斗国家战略计划的核心任务之一:
2015年9月,国务院发布《促进大数据发展行动纲要》,大力促进中国数据技术的发展,数据将被作为战略性资源加以重视;
2015年10月26日,在国家“十三五”规划中具体提到实施国家大数据战略。
挑战:BI(商业智能)
2015年对于商业智能(BI)分析市场来说,正隐陪指由传统的商业智能分析快速进入到敏捷型商业智能时代。以QlikView、Tableau和SpotView为代表的敏捷商业智能产品正在挑战传统的IBMCognos、SAPBusinessObjects等以IT为中心的BI分析平台。敏捷商业智能产品也正在进一步细化功能以达到更敏捷、更方便、适用范围更广的目的。
崛起:深度学习/机器学习
人工智能如今已变得异常火热,作为机器学习中最接近AI(人工智能)的一个领域,深度学习在2015年不再高高在上,很多创新企业已经将其实用化:Facebook开源深度学习工具“Torch”、PayPal使用深度学习监测并对抗诈骗、亚马逊启动机器学习平台、苹果收购机器学习公司Perceptio同时在国内,网络、阿里,科大讯飞也在迅速布局和发展深度学习领域的技术。
共存:Spark/Hadoop
Spark近几年来越来越受人关注,2015年6月15日,IBM宣布投入超过3500名研究和开发人员在全球十余个实验室开展与Spark相关的项目。
与Hadoop相比,Spark具有速度方面的优势,但是它本身没有一个分布式存储系统,因此越来越多的企业选择Hadoop做大数据平台,而Spark是运行于Hadoop顶层的内存处理方案。Hadoop最大的用户(包括eBay和雅虎)都在Hadoop集群中运行着Spark。Cloudera和Hortonworks将Spark列为他们Hadoop发行的一部分。Spark对于Hadoop来说不是挑战和取代相反,Hadoop是Spark成长发展的基础。
火爆:DBaaS
随着Oracle12cR2的推出,甲骨文以全新的多租户架构开启了DBaaS(数据库即服务Database-as-a-Service)新时代,新的数据库让企业可以在单一实体机器中部署多个数据库。在2015年,除了趋势火爆,12c多租户也在运营商、电信等行业投入生产应用。
据分析机构Gartner预测,2012年至2016年公有数据库云的年复合增长率将高达86%,而到2019年数据库云市场规模将达到140亿美元。与传统数据库相比,DBaaS能提供低成本、高敏捷性和高可扩展性等云计算特有的优点。
3. 此次的国庆小长假,西安的游客多吗
今年中秋、假日期间,西安共接待游客1474.81万人次,较去年同比恢复近八成;旅游收入111.40亿元,较去年同比恢复近七成。沉寂了大半年的西安文旅,不仅在这个黄金周迎来了强势复苏,日新月异的城市形象更具吸引力、更显生机勃勃。
另外,假日期间的疫情防控、交通秩序、治安维护、环境整治、市场监管、消费引导和应急处置等各项工作一点也没有放松,经过精心部署和强力运行,使得西安文化和旅游市场呈现出“安全、秩序、质量、效益、文明”的城市秩序,全市未发生重大旅游安全事故,亦无重大旅游投诉。
4. 中国大数据产业和企业的问题观察
中国大数据产业和企业的问题观察
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰。大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。大多数企业客户,对数据商业应用敏感度低
大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于中国大数据产业和企业的问题观察的相关内容,更多信息可以关注环球青藤分享更多干货
5. 大数据告诉你A股的秘密规律
大数据告诉你A股的秘密规律
1、收盘前上涨概率较高
统计数据表明,2009年1月至2015年9月期间,对比指数每五分钟的涨跌幅发现,午盘收盘前和全天收盘前,市场呈现较高概率的上涨,上涨概率高达60.3%和79.1%。
尾盘耐灶上涨现象与市场交易机制有较大关系,例如尾盘机构集中建仓、以及大宗交易的影响。但综合而言,对该现象的产生,目前尚没有完美的解释。
2、周一上涨概率大
统计每周的交易时间发现,周一上涨的概率和幅度最大。分段统计后发现,牛市期间,股市在周一上涨的幅度较大,而熊市中这种现象不明显。
“周一更容易上涨现象”在美国等成熟市场则并不明显,这很可能是由于成熟市场投资者情绪化不明显造成的。
周一出现极端涨跌幅的概率较高,这也与市场预期有关。例如投资者未预期到的周末市场数据和突发事件出现,或者预期落空带来的市场波动散启,在我国以散户为主的市场中,这种市场情绪波动更大。
统计月度数据发现,我国资本市场的上半月效应明显。而这种现象,与SHIBOR短端利率上半月较低的统计规律遥相呼应。
3、四月份要卖
“Sell In may and goaway”是一句广为流传的股市谚语,指的是股市在经过5月份后,市场就开始疲软,投资者在5月就可以获利了结。
通过随机测算上证综指的投资收益率:在每年任意时间买入指数,在之后任意时间卖出获利。发现年初买入、四月卖出获得正收益的概率最大。同时对比美国标普500指数,此期间交易带来的正收益概率也是最大的。
同时,美国的长期投资价值凸显,从年度随机投资收益的分布来看,均显示最长时间的持股,投资收益最高。对比标普500的指数的长期走势,发现标普500指数的价值是通过时间来检验的,持有时间越长,收益越高。
如果从月度涨跌幅的角度去看市场,上证综指和标普500指数均在上半年取得比较好的正收益,上涨的概率较高,而进入6月份后,市场的回报率和上涨概率均下行。
4、牛市波动增强
用两种方法来表示股票市场的波动,日内分钟收益率的标准差和开盘收盘价格波幅。
从日内分钟数据的标准差来看,在上证综指的阶段性顶点时,市场的波动显著增强,而这种现象在市场趋势性上涨的尾端更为明显。
从开盘收盘价格的波幅来看,波动带来的规律并不如上一种方式明显。
但对开盘收盘的价格进行了策略化处理后,回测其效果即:高开买进、低开卖出的双向操作。
回测结果显示,这样的策略长期表现要好于指数,但其效果存在失效期。用同样的方法测试了沪深300股指期货主力合约,策略失效同样存在,其长期效果尚可,年化回报率为12.2%。
5、春节前后上涨概率大
每当长假来临,持币过节还是持股过节的问题,都会备受投资者关注。
研究结果表明,在节前五个交易日,节后七个交易日里,上证综指表现较好。在迄今为止的22个春节前后,上证综指上涨次数为18次,上涨概率高达81.81%,涨跌幅的中值为3.19%,均值为3.72%。春节效应比十一效应更加明显,持续时间更长、平均上涨幅度更大。
在十一长假之前的三个交易日和假日之后的两个交易日,上证综指表现较好。在16次十一长假前后,上证综指有11次上涨,上涨概率为68.75%,指数涨跌幅的中值为1.87%,均值为1.05%。由此可见,在十一假日前后,指数上涨的概率较大,十一效应在A股市场中较为明显。
整体而言,我国的假期效应明显,尤其是春节效应,其持续时间和涨幅都比较高。
统计标普500指数的圣诞节效应,发现同样存在节日效应,尤其是在圣诞节之后,市场表现相对较好。
6、均线系统仍有效
技术分析在我国股票市场应用依然较为广泛,而技术分析的有效性,也是广大投资者争论不休的事情。
回昌掘扮测结果显示,在多数发展比较完善的资本市场,例如美国,日本、英国、法国,均线系统下的技术分析已经失效,而新兴市场国家和地区依然有效,而且德国DAX30指数有效性也较强。
值得一提的是,双均线系统的有效期,比单均线有效期要长久一些,或许这暗示着技术分析也要进行不断的演化,以适应市场的发展。
7、7倍PE肯定见底
资本市场有其自身规律,也有着估值的上下限。“树不会长到天上去”,脱离资本市场规律的事情不可能长久。
8、低价股收益率最高
对比A股的不同市场风格指数发现,在A股中,低估值个股,包括低市盈率和低市净率指数,长期走势均好于中、高估值品种,且其长期收益率要高于上证综指。在资本市场的长线低估值走势较好。
9、新股上市第一年收益欠佳
由于我国资本市场的结构和上市制度,导致上市公司在上市前报表的盈利能力较高,而一旦上市,其整体盈利能力开始下滑。
统计前五年上市公司的RoE分布表明,随着上市时间的延长,低盈利能力的公司开始增加,收益率的众数开始向较低的RoE水平倾斜。
对比上市公司不同年限的投资价值,上市第一年的投资收益并不好,其后明显好转。
10、金融板块行情独立
从行业的月度收益率出发,寻找行业之间的联动性。
数据显示,金融行业与其他行业的相关性最小,而在每个月上涨前五名的行业中,银行业出现的次数最多。
6. 十一长假放几天
十一长假国庆节根据《全国年节及纪念日放假办法》要放假3天(10月1日、2日、3日)。
根据《全国年节及纪念日放假办法》相关规定:
第二条 全体公民放假的节日:
(一)元旦,放假1天(每年1月1日)
(二)春节,放假3天(农历正月初一、初二、初三)
(三)清明节,放假1天(农历清明当日 )
(四)劳动节,放假1天
(五)端午节,放假1天
(六)中秋节,放假1天
(七)国庆节,放假3天(10月1日、2日、3日)
第六条全体公民放假的假日,如果适逢星期六、星期日,应当在工作日补假。部分公民放假的假日,如果适逢星期六、星期日,则不补假。
(6)2015十一长假大数据扩展阅读
《劳动法》第四十条规定:
用人单位在下列节日期间应当依法安排劳动者休假:
(一)元旦;
(二)春节;
(三)国际劳动节;
(四)国庆节;
(五)法律、法规规定的其他休假节日。
7. 数据新闻的功能与优势
目前,在大数据新闻制作上已经积累了经验的国际媒体有《卫报》《纽约时报》《华盛顿邮报》等,但它们也处于探索阶段。通过对国内外代表性媒体的大数据新闻实践进行研究,可以总结出大数据新闻的四个功能,即描述、判断、预测、信息定制。
《卫报》网页2012年1月5日发布了一个有关“阿拉伯之春”的大数据新闻报道。报道利用动态图表,以时间轴为主线描述了自2010年12月一突尼斯男子自焚至2011年12月的一年间,17个阿拉伯国家发生的一场政治运动。网民可以通过这个四维动态的报道,清楚地从宏观到微观,全面了解阿拉伯之春在不同国家的不同表现形式。图表上方设置了时间的推拉按钮,网民推拉到自己想观看的时间点,可以清楚地看到相同时间点上不同国家发生的相关事件。画面的下方是各个国家的标签,网民也可以通过国家标记,来关注某个具体国家在纵向时间轴上的政治演变进程。不同的政治事件用不同颜色来标示:绿色为群众性抗议活动,浅蓝色为国际上的相关反应,黄色为政治事件,红色为政权更替。如果网民想了解某个事件的具体内容,点击不同颜色的标示,随即获取深度报道的链接。这种新闻报道方式,将涉及十几个国家、时间跨度长达一年的复杂的“阿拉伯之春”,以明晰的动态方式呈现出来,纯文字报道难以达到这样的传播效果。
大数据新闻还能够描述那些看不见的短期过程,比如流言如何在社交网络上传播。《卫报》通过追踪分析260万份推特内容,利用可视化动态图表描述了从流言开始传播到辟谣结束的整个过程。它也是以时间为轴,利用圆圈大小、颜色变化来描述整个过程,绿色的圈代表散布流言的推文,红色的圈代表更正这个流言的推文,灰色的是中立的评价推文,黄色的是对流言持怀疑态度的推文。圈的大小代表了推文的影响程度,圈越大影响程度越大。如果想了解具体的内容,点到哪个圈,屏幕旁边即刻呈现这个圈所代表的推文的发布者、发布日期、转推人数等等信息。通过这个动态的演进过程,人们可以清楚地看到,社交网络并不像一般想象的那样,是一味扩散虚假消息的场所。其实在假消息出现不久,社交网络上各种辟谣的消息就已经出现了。
从这两个例子可以看出,大数据新闻的报道方式能够在宏观上对某个事件看得更加清楚与全面,事件复杂的演进过程以及这个过程中的各个方面,都能描述得直观且有趣。 2011年8月,一个黑人穆斯林男子乘出租车在伦敦街头遭到警方拦截,双方发生枪战,该男子当街死亡。两天后,约300人聚集在伦敦市中心的警察局进行抗议,后来演变成持续多天的骚乱事件,抗议者引燃了汽车、商店和公交车。当天夜里,伦敦其他地区也发生了类似袭警、抢劫、纵火等事件。一些媒体评论指出,这与贫富差距有关。英国首相卡梅伦接受采访时,声称骚乱事件与贫富差距无关。
英国《卫报》记者利用大数据的分析结果,做了关于这一事件的系列报道,其中的一个报道主题,便是骚乱与贫困有没有关联。记者利用谷歌融合图表,在伦敦地区地图上标记出骚乱分子的居住地信息(黄色点)、实际发生骚乱的地点(灰色点),以及贫困地区分布(越偏红色表示越贫穷)。根据这张伦敦市中心的图,网民可以将图扩展到整个大伦敦地区来看,也可以聚焦到具体的街区放大来看,观察每个被标记的骚乱点的人流从哪里来,到哪儿去,从而清楚地看到贫苦与骚乱之间存在的某种关联。这种关系的表达,比起单纯的文字报道来,表现清晰,说服力强。 2013年“十一”长假期间,九寨沟发生游客大量滞留现象并引发群体性事件。如果新闻媒体或旅游当局能够在此前运用中国的局部大数据进行预测性报道,完全可以避免这样的群体性事件发生。因为传媒可以根据这方面的大数据,提前报道在哪个具体时间段内,有多少人从哪些地方前往九寨沟,其中男人、女人、老人、儿童各有多少等等。
这只是一个小例子,大数据能够预测社会和人们日常生活中的各个方面。通过挖掘大数据,传媒在技术上可以制作出可视化、交互式的图表,告知很多事项。微观的如流行疾病来袭、交通拥堵情况;宏观的如经济指数变动、某种社会危机的来临等等。网络开辟了“网络预测”网页,以“大数据,知天下”的口号推出,预测的产品有高考、世界杯、电影票房等等。它们后期准备上线的产品扩展到了更广的领域,比如金融预测、房地产预测等等。 利用大数据的分析结果,满足网民的信息个性化要求,是国外媒体的最新尝试。例如Five thirty eight数据博客,在2014年5月23日新辟读者来信专栏“亲爱的莫娜”。其第一期开篇语阐释的目的是:“我开这个专栏是为了帮助读者回答一些生活中重要的或者严肃的问题,比如我是不是很正常、我处在世界的哪个地位层面等等,目的不是为了给读者答疑解惑,不是告诉读者应该做什么和不应该做什么。恰恰相反,我提供数据来解释、描述你的经历。”
综观这个专栏,读者的提问五花八门,比较严肃的如:“美国有多少人从来没有喝过一滴酒?”“美国有多少男性空乘人员?”也有比较私人的如:“我该多久换一次袜子?”“婚前同居会不会导致离婚”等等。专栏作者利用美国范围内的大数据,即刻将分析结果告知当事人,但避免给出指导性意见,仅告知各种数据的分析结果,让网民自己依照分析结果来处理自己面临的问题。这个专栏与传统的纸媒读者来信专栏不同,不是通过星座、血型、生辰八字或伪装成阅历丰富的专家,来提供些心灵鸡汤式的回答,只用数据来说话。
这种尝试在媒体中并不少见。2011年,BBC广播公司曾根据2012年政府的财政预算联合毕马威会计师事务所做了一个预算计算器,用户只需要输入一些日常信息,例如买多少啤酒,用多少汽油等,就能够算出新的预算会让你付多少税,明年生活会不会更好。
根据用户需求提供个性化的大数据服务,是未来的发展趋势。这些报道有一个共性,媒体都致力于以用户的需求为中心,利用大数据诠释宏观社会现象对用户的影响,或者回答用户困惑的问题。媒体可以精准定位,经过后台计算,按照用户的接收习惯、工作习惯和生活习惯将服务推送到用户眼前。
8. 大数据 一个彻底改变人们生活的时代
大数据:一个彻底改变人们生活的时代
有学者认为,我们目前正处在一个大数据时代。随着社交网络的逐渐成熟,移动带宽的迅速提升,云计算、物联网的应用多样,大数据的运用和创新给公民、政府、社会带来了种种的挑战和变革。
根据中国电信成都分公司总经理喻云华介绍,在未来的10年,网上各种各样的大数据总量将可能达到40Z,相比现在将会增加近50倍。数据将会到了用“泛滥”来形容的地步。
有数据甚至显示,在不远的将来,人们在3分钟内上传到网络上的视频,如果1个人不眠不休的花时间把它看完的话,将耗去34年的时间,
那么,大数据时代会给我们带来哪些影响?我们又可以利用大数据做些什么呢?
根据大数据分析的结果,沃尔玛超市认为“尿不湿”和啤酒放在一起最好卖,年轻的爸爸到超市给婴儿买“尿不湿”,顺便犒劳自己买啤酒,所以把这两个东西放在一起会销量大增。
华尔街资本市场通过分析全世界的微博账户的留言来判断民众情绪。民众高兴时买股票,焦虑时会抛股票,根据这个看全世界是高兴的人多,还是焦虑的人多。
还有,平安集团利用大数据分析消费者的行为。招商银行通过数据分析区分出信用卡经常出现的场所。中信银行通过数据库解决营销问题。兴业银行利用数据开发客户。
又一年十一长假来临了,就在你买票被“秒杀”,饱受“拥堵”烦恼的时候,你可曾想到,大数据可能会是你的福音。有了大数据分析,就能够根据手机在某个路口走了多长时间,知道这个地方堵不堵;提前半个月就能知道今年放假哪个旅游点会堵,哪里车会堵……
大数据时代已经到来,很多人已经身处其中,最典型的感觉是数据增加速度之快。数据产生方式现在已经被极大地改变,因为以前数据的生产都是由专业团体、专业人士,或者是专业公司完成,而现在数据产生更多是个体行为、是个人,每个人都可以使用自己所采集的终端来产生大量的数据。
数据传统途径也发生了很大的变革,以前获取信息的来源基本上是报纸等平面媒体,或者电视、广播等传播媒体;现在很多信息来源通过互联网。互联网已经变成了媒体传播的主要途径,这个改变对整个社会也产生了非常大的改变。
社交环境网络化变革,以前交朋友更多是生活的圈子,比如说同学、邻居、亲戚,现在更多的通过是互联网这种虚拟的环境。
数据存储习惯发生变化,以前都是把照片和文件备份到自己的电脑或者软盘上。现在这种观念已经改变,除非做保密工作,或者是年纪大一点的另当别论,大多数人就把它放到网上,在云中进行存储。
实际上早在多年以前,大数据问题已经倍受业界关注,像中国移动、中国电信这样的巨头早就在积极建设数据中心,引进各种先进的数据处理技术,电信甚至专门建立了一个西部信息中心,电信IDC机房也已经不仅仅是在提供服务器托管之类的基础业务了,数据中心同大数据的结合也日益紧密。
其实在普通人不知不觉当中,时代早已经发生了巨大的变革。
很多公司原来都不做手机的,现在纷纷进军手机市场,他们靠卖手机赚钱吗?不是,他们是想通过客户端来捆绑用户。
过去IBM硬件收入占到整个收入的60%~70%,现在服务收入已占到50%~60%。惠普错过了转型,近两年用数百亿美元收购移动互联网和软件企业,要进行大数据开发。在大数据时代,整个产业链的价值链向服务去倾斜。
搞物联网的希望做移动,搞移动的希望做物联网,搞电信的希望做广播,搞广播的希望做电信,卖手机的希望搞运营,做运营的希望卖手机。大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域。
大数据时代机遇与挑战并存,其将成为一个彻底改变人们生活的时代。