Ⅰ 大数据对供应链管理的影响
大数据对供应链管理主要有几个方面:
1.供应链管理理念在大数据的支持下,更加精细化;
早期供应链对物流的管理,更多表现如丰田的神话、沃尔玛的大手笔投入,但在大数据时代,这些为大、中型企业也提供提升自己的机会,原本不易获得的数据,在大数据时代变得更加易得与廉价,同时专业供应链企业不断涌现,整体对全行业的公司带来改变。
2.协同效应在加大:
产业协同,一直是产经界广告泛倡导的,但真正实现还比较困难。大数据时代,产业链上流的企业很容易获得直接消费信息,这样就会更加优化自己的产能;同样,位于下游的贸易公司和销售公司,可以更精准的把握市场,同时利用数据、行业地位等优势,要求上游放量与让利。
3.反向定制渐渐推动消费需求
消费端的需求,近年来不断推动着企业创新。大数据让反向定制成为可能,团购、众筹,这些新型交易模式,都是大数据朝代下的新生产物,通过这些企业收集到消费者真实的大数据信息;同时,这些模式也给小微企业低成本扩张,提供的便利;这些都与供应链无关吗?不,供应链在其中起到重大的作用。
Ⅱ 大数据对企业信息管理产生什么影响
大数据能够促进对消费者需求的预测。
新一代基于互联网DNA企业的核心能够专在与利属用云模式和大数据技术更加贴近消费者、深刻理解需求、高效分析信息并做出预判。所有传统的产品公司都只能沦为这种新型用户平台级公司的附庸。明智的选择是,传统的产品型公司架构互联网平台或是借力互联网公司的数据资源,因为“获取用户的真实需求”是互联网的基因——通过网络购物(电商平台)或受网络社交(社会化SNS等)影响消费决定的用户不是通过语言告诉需求,而是在一系列的行为中,不经意地透露了需求,这一系列的行为必须能够相关参照、关联、才能得出答案。解决这个问题的技术就是“大数据”。
Ⅲ 大数据 引发企业管理变革
大数据 引发企业管理变革
大数据带来新一轮信息革命的同时,掀起了一场管理革命,在经营管理层面上给企业带来诸多变化。
目前,国内大数据已基本具备发展土壤:企业数据从数量和多样性上有质的提升,数据价值得到较高认同。本文尝试以大型国企(央企)为研究对象,探索大数据对企业管理变革的影响及企业的应对之策,希望对企业大数据管理和利用有所裨益。
大数据引发企业管理变革
从理论角度来讲,之所以说大数据掀起企业管理变革,背后有两个密切关联的因素。
一是大数据的本质与管理的核心因素高度契合。一般认为,管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以说大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
二是大数据由资源到资产的转变。大数据时代,数据在各行业渗透,渐渐成为企业战略资产。拥有数据的规模、质量直接决定了企业的核心竞争力以及市场洞察力,也影响着企业的战略调整,数据意味着巨大的投资回报。
央企大数据管理机遇与挑战并存
大数据发展对不同行业、发展阶段及规模的国有企业有着不同影响。特别是大型央企,在利用大数据方面起点相对较高,受益更大。对于央企来说,大数据对其经营管理意味着什么?
第一,机遇方面。一是体现在信息化建设投入上。大型央企有实力对企业的信息技术进行投资,应用较先进的技术,保障企业数据有效管理和利用。此外,国有企业管理延续性较强,总体较稳定。二是体现在顶层设计上。大型央企在大数据管理的顶层设计上具有优势,可以对企业数据化管理进行系统规划。三是体现在政策优势及人才队伍上。
第二,面临的挑战。一是信息体系建设十分迫切。一般大型国有企业数据量庞大,从信息挖掘层面讲,这需要合理的技术搭配。此外,从组织结构来说,大数据对信息技术部门与业务部门之间的密切配合提出了更高要求。二是注意信息安全防范。三是人才储备不足,对相关数据挖掘分析人才的吸引力和培养水平有待提高。
央企开展大数据管理的探索与展望
如何开展大数据管理?对于国内央企来说,要有一条符合自身发展特点的大数据管理路径,在信息化建设中,打造“数据化企业”。
第一,做好大数据资产的筛选和评估。对国内央企来说,这分为事前和事后两个阶段。事前是从思想上重视大数据对企业的影响,将数据作为企业的核心资源来看待。事后是要在企业内部对大数据进行从资源到资产的筛选,对什么样的大数据可以成为资产进行评估。
第二,集约开展顶层设计、系统规划。大型央企下属单位众多,企业管理结构不同,情况相对复杂。要发挥系统优势,必须对数据化进行统一科学设计,避免重复建设、各行其是、互不兼容,充分发挥信息技术对数据分析的作用。
第三,强化数据管理,重视数据安全。在数据管理上,央企可以结合现有企业信息化建设,将企业数据管理推向纵深。数据管理事关企业核心竞争力和战略目标,必须有战略高度。数据收集和管理要“广撒网”,发挥各部门的协同效应。不仅要关注综合性数据和关键数据,而且要关注基础数据,要深度利用、挖掘数据。同时,要特别重视数据安全,从技术和制度层面保障数据安全。
第四,优化内部运营模式,加强外部合作。央企应确立面向客户的价值服务导向,针对需求,重新制定、优化企业的制度、流程,增加数据收集、管理和分析环节,设计适应市场竞争的商业模式和内部运营模式。要加强与外部的合作。与外部企业、科研院所、行业协会等机构进行交流合作,实现数据技术、资源和平台互补。同时,加强上下游产业链相关企业的数据管理合作,在数据收集、分析、共享方面开展互助。
以上是小编为大家分享的关于大数据 引发企业管理变革的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 33. 大数据与管理的关系
大数据与管理的关系:通过研究可以发现,在企业管理决策制定方面,大数据的出现使管理决策主体、决策权、决策技术和决策环境都受到了一定程度的影响。面对这种发展形势,企业管理者还应加强对大数据分析和管理问题的认识,并利用大数据加强企业管理,以便得到科学的管理决策,进而为企业的可持续发展提供支持。
所谓的“大数据”,其实就是海量数据。从信息技术的角度来讲,大数据技术则为海量数据的分析和挖掘技术。作为基础性资源,大数据毫无疑问拥有重要的商业价值,但是无法利用传统数据处理方法进行大数据的高效管理,还要利用专业化的技术手段实现大数据的处理。
Ⅳ 在互联网+及大数据时代,组织及管理者面临着哪些新的挑战和机遇
大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。有报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满1.88亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。网络公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生3.6GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均0.1个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为5.64亿,手机网民为4.2亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据一个公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析3.4亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅0.3%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。
Ⅵ 运营商迎来大数据时代 管理和分析是大挑战
运营商迎来大数据时代:管理和分析是大挑战
大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。
运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢扞华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。[page]
卢扞华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的"信令"系统分析上,此外,运营商还可以通过"用户行为分析"系统,进行精准营销。运营商还提供IDC服务,通过"云"中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的"大云"、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如"信令",采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。
Ⅶ 大数据传统的企业管理存在着哪些问题
大数据时代传统企业管理遇到的问题:
随着信息化程度不断提高,互联网、物联网、云计算和智能手机终端等技术的不断发展,数据的产生、存储、传播和分析等,不论从数量、方式方法上都较以往有了天壤之别,大数据时代给各行各业带来了巨大的冲击,给传统的企业管理带来一系列挑战。
1、企业决策过程
传统企业的经营决策往往更多地依靠企业的管理者,依靠管理者的经验、直觉和魄力,这样的企业在以前可能会发展壮大,但是缺乏对决策管理过程的监控,缺乏对数据的搜集、提取和分析,没有明确数据与决策结果的关联关系。另外,传统企业的数据分散在各个部门,数据的集中度不高,人们对其关注程度也不高。随着大数据时代的到来,传统企业的组织结构和决策过程必将面临前所未有的考验。
2、智能化、信息化程度不够
大数据的“4V”特征在数据存储、传输、分析、处理等方面较以往均有本质变化。数据量几何倍数的增长,对存储技术提出了挑战,需要高速信息传输能力支持,对非结构化的数据、低密度有价值数据的快速分析和处理能力提出更高要求。据统计,企业中85%的数据都属于非结构化、低密度的数据,大多数企业现有的数据处理方法和系统无法将大量的非结构化数据进行处理。另外,随着数据量的快速增长,对数据的存储、传输能力也提出更高的要求,这都将成为企业在大数据时代遇到的难题。
3、信息安全问题
随着大数据的发展,企业的海量数据中不仅包括业务数据、客户数据、公司内部数据,也不乏大量个人信息,数据本身的安全及个人隐私面临着泄露的挑战。大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,严重的将导致企业的商业机密及个人隐私泄露。如何保证商业秘密、个人隐私秘密等安全问题,对企业是一道难题。
4、人力资源匮乏
大数据改变了企业的传统管理思维,大数据时代的到来企业的管理者和员工都需要重新认识数据的重要性,提高相应的素质才能胜任原有的职位。在大数据时代,对数据的处理和分析已经超出了信息化的范畴,超出了市场营销的范畴,超出了运营管理的范畴,需要具有综合能力的人才,需要有相应新的部门来整合数据资源。对大数据的处理需求,必须有专业的数据分析人才运用这些大数据,才能将其转化为经济价值,数据人才必须能够深入了解企业业务与组织,具有统计应用知识、熟悉大数据数据分析工具的运用等,这就要求数据分析人员必须有整合运用3项基本技能的要求,而传统企业这方面人才非常稀少。
Ⅷ 大数据对于管理理论与实践的影响
大数据对企业管理的影响:
.大数据对企业管理思想的影响
大数据时代的来临改变了企业的内外部环境,引起了企业的变革与发展。企业越来越智能化,管理实现了信息化。企业中的数据收集、传输利用需要现代管理思想的支撑。
大数据环境下的企业管理应当以人为本,在实践的基础上运用现代信息化技术,采用柔性管理,将数据当做附加资产来看待。企业运营离不开数据的支撑,企业管理当中如果不能够深刻认识到大数据的重要性,仅仅以公司短期盈利作为目标,是缺乏战略性的思考。有效的利用数据分析结果,提前进行预测,抓住市场先机、顾客需求,就能主动赢得市场,才能在企业管理与销售业绩上创造出更大的财富。
2.大数据对企业管理决策的影响
大数据背景下数据的分析利用是企业决策的关键。首先,大数据的决策需要大市场的数据。基于云计算的大数据环境影响到企业信息收集方式、决策方案选择、决策方案制定和评估等决策实施过程,对企业的管理决策产生影响。大数据决策的特点体现在数据驱动型决策,大数据环境下的管理决策对于企业不仅是一门技术,更是一种全新的决策方式、业务模式,企业必须适应大数据环境对管理决策的新挑战。
其次,大数据对决策者和决策组织提出了更高的要求。大数据时代改变了过去依靠经验、管理理论和思想的决策方式。管理决策层根据大数据分析结果发现和解决问题、预测机遇与挑战、规避风险。这就要求决策层具有较高的决策水平。由于大数据背景下需要企业全员的参与,动态变动环境下,决策权力更加分散才有利于企业做出正确的决策。这就要求企业的组织更加趋于扁平化。
3.大数据对企业人力资源管理的影响
人力资源是企业中最宝贵的资源,是企业创造核心竞争力的基础。基于大数据技术,企业将大大提高人力资源管理的效率和质量。有效的加快人力资源工作从过去的经验管理模式向战略管理模式的转变。
公司从员工招聘到绩效考核与培训,积累了大量的各类非线性数据,这些数据都是无形的资产,利用大数据技术,将这些数据进行整合分析利用,能够为企业带来巨大贡献。首先,在员工招聘上,只需将单位用人要求与员工各项能力数据相匹配,结合人力资源招聘的经验,便可轻松选出符合要求的员工。其次,在绩效考核上,进行标准化管理,将员工日常的各类数据进行分析,设定等级标准,即可得出客观公正的考核结果。这大大排除了绩效管理的主观性与不全面性。最后,根据大数据的分析结果,针对不同员工区别培训,更有效率的提高了培训水平。
4.大数据对企业财务管理的影响
大数据使财务管理的模式和工作理念颠覆性的改变。首先,财务管理更加稳健。公司将各类财务数据在大数据技术下进行发掘,提纯出更多有用的财务信息,及早的发现财务风险,为管理决策者提供重要的决策依据,做出正确的决断。其次,财务数据的处理更加及时高效。财务数据在企业日常运营当中举足轻重,企业的各项交易都依赖于财务数据的分析,企业基于大数据,通过对财务数据的分析和处理,能够改进财务管理工作的运行模式,并且是有效率的,企业资金资本运作成本降低和压缩了,利润相应提高了。企业资源最丰富的积累,最基础的财务数据,通过大数据技术进行对财务数据,整理和分析,实现了企业价值增值。
总结:
大数据时代对企业的管理提出了更高的要求。信息化时代下企业每天都在产生大量的数据,大数据时代下,这些数据影响着企业管理的方方面面,它改变着企业的管理思想与管理模式,使企业的决策更加准确高效,使人力资源管理工作更便捷,使企业财务管理稳健、绩效考核客观公正,企业管理中应加强收集分析利用这些数据,确保数据的准确与安全防护。将传统经验、理论管理与大数据管理决策想结合,适应时代发展,将企业做大做强。