导航:首页 > 网络数据 > 大数据测试面试问题

大数据测试面试问题

发布时间:2023-07-26 17:55:33

1. 数据分析师常见的面试问题

关于数据分析师常见的面试问题集锦

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map rece、余弦距离?

5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?

10、什么是概率合并(aka模糊融合)?使用sql处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、sas, r, python, perl语言的区别是?

15、什么是大数据的诅咒?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢td数据库的什么特征?

19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?

20、如果有几个客户查询oracle数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?

21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别maprece过程有好的负载均衡?什么是负载均衡?

24、请举例说明maprece是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?

25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

30、在sql, perl, c++, python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?

31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?

32、定义:qa(质量保障)、六西格玛、实验设计。好的与坏的实验设计能否举个案例?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对a/b测试熟吗?

39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的.敏感性的想法如何看?

40、对于一下逻辑回归、决策树、神经网络。在过去XX年中这些技术做了哪些大的改进?

41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?

42、你如何建议一个非参数置信区间?

43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

49、你有使用过api接口的经验吗?什么样的api?是谷歌还是亚马逊还是软件即时服务?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

51、可视化使用什么工具?在作图方面,你如何评价tableau?r?sas?在一个图中有效展现五个维度?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?

56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?

77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?

;

2. 常见大数据公司面试问题有哪些

1、您对“大数据”一词有什么了解?


答: 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。


2、告诉我们大数据和Hadoop之间的关系。


答: 大数据和Hadoop几乎是同义词。随着大数据的兴起,专门用于大数据操作的Hadoop框架也开始流行。专业人士可以使用该框架来分析大数据并帮助企业做出决策。


注意: 在大数据采访中通常会问这个问题。 可以进一步去回答这个问题,并试图解释的Hadoop的主要组成部分。


3、大数据分析如何有助于增加业务收入?


答:大数据分析对于企业来说已经变得非常重要。它可以帮助企业与众不同,并增加收入。通过预测分析,大数据分析为企业提供了定制的建议。此外,大数据分析使企业能够根据客户的需求和偏好推出新产品。这些因素使企业获得更多收入,因此公司正在使用大数据分析。通过实施大数据分析,公司的收入可能会大幅增长5-20%。一些使用大数据分析来增加收入的受欢迎的公司是-沃尔玛,LinkedIn,Facebook,Twitter,美国银行等。

3. 大数据分析面试问什么

  1. 基本工具

包括规定动作和自选动作两类。

1.1 规定动作

SQL查询: ON、DISTINCT、GROUP BY、ORDER BY等等。从数据库中提取数据是数据分析的第一步。

1.2 自选动作

根据简历来问,简历上写什么就问什么,会问得比较深入。简历作为敲门砖,撰写也是非常重要的,切不可写的过于夸张和造假,奉劝各位不要作死,毕竟不作死都有可能会死。Python、Stata、R、SPSS、SAS、EViews都算比较常见的数据分析工具。

2.逻辑思维

主要分为两方面,对业务逻辑的理解能力和行文的逻辑水平。

2.1业务逻辑

虽然一个业务看似流程简单清晰,但产生数据的复杂程度往往超过大多数人的想象。对业务逻辑的考察主要通过相关项目经历。

2.2行文逻辑

毕竟最终产出是一份份报告,可能是HTML邮件也能是PDF。

3.理论储备

也分为规定动作和可选动作。

3.1 规定动作

主要是基础的统计学理论,如方差、协方差、算数平均数、几何平均数、中位数、众数、分位值、双峰数据、长尾数据、假设检验、期望迭代法则、贝叶斯原理等。

3.2 自选动作

根据简历来问,简历上写什么hr一定会问什么。

4.对细节的敏感度

作为数据分析师,每天要关注大量数据指标。对细节的敏感度是非常必要的。这主要分为两方面,对统计口径的敏感度和对数据的敏感度。

4.1 统计口径

统计口径一致是确保数据可比性的基础,这非常考验数据分析师的敏感度和行业经验。

4.2 数据

面试者对数据异常波动、离群值、平均数没有代表意义等情况的迅速识别能力。比如已知然寿司套餐单价1,500,酒水单价300,平均客单价2,500,能不能马上想到这可能是双峰数据或者长尾数据,抑或既双峰又长尾的数据?

5.学习能力

互联网行业瞬息万变,光数据的存储就有Oracle、MySQL、Hadoop、Spark、Hive、Impala、谷哥哥三驾马车等一大堆奇奇怪怪的东西。互联网行业的从业者经常要面对新需求、新工具、新方法。能否迅速掌握新知识,解决新问题面试者必须证明给hr看。主要考察的方式是了解过往项目经历,或者出作业题(比如Sci-Hub)。

6.排版和简单UI设计

数据分析报告必须简洁、清晰、重点突出。主要考察方式是出作业题让面试者限时交一份slides(就是PPT啦)出来。

7.价值观

主要看工作热情、态度、道德水平等等,这方面的问题比较随机。

4. 尚硅谷大数据面试都会问些什么

其实不管是哪家公司面试,都是根据你的简历来对你进行提问,所以自己简历上面写的知识点都要全部对答如流。

还有慎用精通这样的字眼,工作五年以上的人,也不敢说自己对哪一方面能够达到精通的地步。

尚硅谷大数据面试的一些基本问题总结如下:

1.讲讲你做的过的项目。 项目里有哪些 难点重点注意点呢?
2.讲讲多线程吧, 要是你,你怎么实现一个线程池呢?
3.讲一下Maprece或者hdfs的原理和机制。map读取数据分片。
4.shuffle 是什么? 怎么调优?
5.项目用什么语言写? Scala? Scala的特点? 和Java的区别?
6.理论基础怎么样,比如数据结构,里面的快速排序,或者,树? 讲一讲你了解的树的知识?
7.数学怎么样呢?
8.讲一下数据库,SQl ,左外连接, 原理,实现?
9.还了解过数据的什么知识? 数据库引擎?
10.Hadoop的机架怎么配置的?
11.Hbase的设计有什么心得?
12.Hbase的操作是用的什么API还是什么工具?
13.对调度怎么理解.? 用什么工具吗?
14.用kettle 这种工具还是 自己写程序? 你们公司是怎么做的?
15.你们数据中心开发周期是多长?
16.你们hbase里面是存一些什么数据

5. 大数据技术Hadoop面试题

单项选择题

1.下面哪个程序负责HDFS数据存储。

a)NameNode

b)Jobtracker

c)Datanode

d)secondaryNameNode

e)tasktracker

2.HDfS中的block默认保存几份?

a)3份

b)2份

c)1份

d)不确定

3.下列哪个程序通常与NameNode在一个节点启动?

a)SecondaryNameNode

b)DataNode

c)TaskTracker

d)Jobtracker

4.Hadoop作者

a)MartinFowler

b)KentBeck

c)Dougcutting

5.HDFS默认BlockSize

a)32MB

b)64MB

c)128MB

6.下列哪项通常是集群的最主要瓶颈

a)CPU

b)网络

c)磁盘

d)内存

7.关于SecondaryNameNode哪项是正确的?

a)它是NameNode的热备

b)它对内存没有要求

c)它的目的是帮助NameNode合并编辑日志,减少NameNode启动时间

d)SecondaryNameNode应与NameNode部署到一个节点

多选题

8.下列哪项可以作为集群的管理工具

a)Puppet

b)Pdsh

c)ClouderaManager

d)d)Zookeeper

9.配置机架感知的下面哪项正确

a)如果一个机架出问题,不会影响数据读写

b)写入数据的时候会写到不同机架的DataNode中

c)MapRece会根据机架获取离自己比较近的网络数据

10.Client端上传文件的时候下列哪项正确

a)数据经过NameNode传递给DataNode

b)Client端将文件切分为Block,依次上传

c)Client只上传数据到一台DataNode,然后由NameNode负责Block复制工作

11.下列哪个是Hadoop运行的模式

a)单机版

b)伪分布式

c)分布式

12.Cloudera提供哪几种安装CDH的方法

a)Clouderamanager

b)Tarball

c)Yumd)Rpm

判断题

13.Ganglia不仅可以进行监控,也可以进行告警。()

14.BlockSize是不可以修改的。()

15.Nagios不可以监控Hadoop集群,因为它不提供Hadoop支持。()

16.如果NameNode意外终止,SecondaryNameNode会接替它使集群继续工作。() 1 2 3

6. 面试题-关于大数据量的分布式处理

面试题-关于大数据量的分布式处理
题目:生产系统每天会产生一个日志文件F,数据量在5000W行的级别。文件F保存了两列数据,一列是来源渠道,一列是来源渠道上的用户标识。文件F用来记录当日各渠道上的所有访问用户,每访问一次,记录一条。
请问如何快速计算出各渠道上新增的用户?
问题分析:首先本次面试的是有关于分布式数据处理以及数据分析的职位,所以相关的面试题目可能会偏向于使用分布式的思想去解决。但无奈本人当时反应太慢,实在没向分布式处理方向思考。
方案一:
本题最直观的一个处理方法就是,直接拿着当日新增的5000W条访问记录一条一条的去匹配历史访问用户。若存在历史访问记录,则忽略;若不存在访问记录,则保存为新增记录。很明显,假若历史访问用户有2亿条记录,则需要和2亿条数据比较5000W次。比较次数可想而知。
由于本人一直在做基于数据库的数据处理工作,很容易就想到将历史数据保存在数据库的一张表中,并对来源渠道和用户标识这两个字段建立索引,然后遍历日志文件F(5000W次)。根据日志文件F中的每一行去匹配数据库中的历史访问记录。由于历史数据表有索引,单次查询的速度也非常快。但是需要5000W次的数据库查询,很明显效率低下。
方案二:
既然多次单一查询无法满足要求,于是可以先通过一种数据导入技术将当日新增数据导入到数据库的另一张表中,并和历史数据做左外关联。若能关联成功,则表示此用户已存在;若关联失败,则表示此用户不存在。
此方案暂且不说5000W条记录的大表与2亿条记录的大表关联效率有多高以及使用到的数据库缓冲区的资源有多少,单就5000W条访问记录导入数据库表,都是一个不小的时间花费。
方案三:
很明显,面试时方案二的回答并未达到面试官的预期,最初被遗憾的PASS掉。一家很有潜力,自己很看好的公司,并计划做为自己未来发展方向的职位,就这样丢下我,扬长而去了。
这几天又看了下分布式相关的介绍,突然想到这道题。一下子醒悟过来,其实还是因为对题目要考察的点分析得不够透彻。当时以为只是仅仅考数据处理效率的一个题目,其实考的是一种将复杂问题拆分为简单问题的拆分思想。了解到这一层,一种新的方式立马在脑海中浮现出来。具体如下:
假如现在有N(N>=2)个存储块,并存在一个函数f(来源渠道,用户标识),对于给定的一组(来源渠道,用户标识),总能将其分发到一个固定的存储块内。那么可以使用此函数将5000W行访问记录尽量均匀的分发至N个存储块上,并同时使用此函数将历史访问记录也分发至这些存储块上。由于相同的一组记录,肯定会被分配至同一个存储块,所以比较时,只需要分别比较各个存储块上当日新增记录与历史访问用户,然后将N个存储块上比较的结果汇总,即可得到最终结果。
假设历史访问用户数据已通过函数f(来源渠道,用户标识)被分发至了N个历史文件H1、H2、…、HN。则详细处理步骤如下:
1、将F中的内容使用函数f(来源渠道,用户标识),分发至文件F1、F2、…、FN内。(可开M(M>=2)个并行,且若N-M越大,同时向同一文件写入数据的概率越小)
2、将文件F1、F2、…、FN内的访问记录去重。(可开N个并行分别处理对应的N个文件)。
3、将文件Fn(1=<n<=N)去重后的结果与对应的历史文件Hn比较得出新增用户结果Rn。(可开N个并行分别处理对应的N个文件且当N足够大时,实际要处理数据的量级就会相当小)。
4、合并第3步得到的结果R1、R2、…、RN即可得到当日新增用户。(可并行)
5、为使历史数据文件H1、H2、…、HN中的数据最全,将结果R1、R2、…、RN分别写入对应的历史文件中。(可并行)
本方案主要有以下优点:
1、数据的分发、处理、合并都可并行处理,明显提高了处理效率。
2、由于每个存储块上的新增数据,只需要与它对应存储块上的历史数据比较即可,大大减少了比较次数。(对于当日每一条记录来说,都只需要与大约历史的N分之一条数据去比较)
3、基本不需要考虑历史全量数据的保存及获取问题。
本方案缺点:
1、处理方案明显变的复杂许多,不仅需要处理数据的分发,处理,还需要一个并行的快速收集方法。
2、可能需要多台服务器并行处理。
本方案难点:
1、一个稳定(对于相同的一组来源渠道和用户标识,必定会被分发至同一存储块)、快速(根据一条来源渠道和用户标识数据,可以快速的计算出它将要被分发至的存储块)、均匀(当日新增数据及历史数据都能尽量均匀的被分发至N个存储块,最理想的情况是每个存储块上分发到的数据都是总数据的N分之一)的分发函数至关重要。
2、如何分发、并行处理及汇总数据。

7. 数据分析师面试常见问题有哪些

1、如何理解过拟合?


过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。


欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。


2、为什么说朴素贝叶斯是“朴素”的?


朴素贝叶斯是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。


3、SVM 最重要的思想是什么?


SVM 计算的过程就是帮我们找到超平面的过程,它有个核心的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。


4、K-Means 和 KNN 算法的区别是什么?


首先,这两个算法解决的是数据挖掘中的两类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监督学习,需要我们给出训练数据的分类标识。最后,K 值的含义不同。K-Means 中的 K 值代表 K 类。KNN 中的 K 值代表 K 个最接近的邻居。

阅读全文

与大数据测试面试问题相关的资料

热点内容
企鹅号视频app叫什么 浏览:157
indd文件用ps打不开 浏览:759
磁盘清理后找不到文件 浏览:379
会计学科代码 浏览:507
文件夹选项没有了xp 浏览:167
win7更改文件格式 浏览:195
对件内文件排序通常按照什么顺序 浏览:12
win10怎样修复系统文件在哪里 浏览:772
frs文件复制服务 浏览:305
有图片文件相册不显示 浏览:354
一般网站名是什么样的 浏览:823
win10用户下有乱码文件名 浏览:973
测风塔数据有哪些 浏览:196
哪些财务数据不能作假 浏览:349
华为待机接收不到微信 浏览:199
sqlite数据库表设计 浏览:627
微信小程序可以关闭吗 浏览:81
数控编程需要掌握什么 浏览:322
找不到离线文件怎么办 浏览:134
c盘开机文件在哪里 浏览:275

友情链接