导航:首页 > 网络数据 > 大数据过滤

大数据过滤

发布时间:2023-07-25 06:08:45

大数据量下如何高效过滤表中的某个字段

(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORACLE 的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2) WHERE子句中的连接顺序.:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(3) SELECT子句中避免使用 ‘ * ‘:
ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4) 减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6) 使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7) 整合简单,无关联的数据库访问:
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8) 删除重复记录:
最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
(9) 用TRUNCATE替代DELETE:
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
(10) 尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(11) 用Where子句替换HAVING子句:

Ⅱ 大数据处理_大数据处理技术

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储滚掘、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为历备吵:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据肢侍挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析

(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

从挖掘任务和挖掘方法的角度,着重突破:

1.可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。

2.数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。

3.预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。

4.语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。

5.数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

Ⅲ 手机推送带来的世界狭窄如何解决

可以减少手机使用的时间,并关闭一些APP的推送功能。
进入大数据时代以后,传统的数据轰炸变成了精准投送。大数据在强化你本来的认知,让你看不到真正的世界。

1.在大数据时代,掌握信息过滤能力变得尤为重要,但这的确很难,而且会越来越难。保持独立思考的能力在当下尤为重要。

2.大数据其实剥夺了很多人说话的权力,大众传媒让更多人的声音传递了出去,但同样,掌握大数据的人就掌握了舆论导向,掌握大数据的组织可以精准地知道哪些信息对自己有利,哪些对自己有害。当我们看到某个信息的时候,我们要思考一个问题,这个信息对谁有利。我们看到的新闻很可能是被大数据过滤过的,很可能是别有用心之举。作为普通人,我们接受到的别有用心的信息一般就是软广告,这个在手机、汽车、化妆护肤品行业应该是尤为明显,可能我今天搜索了某个品牌的手机,我以后就会经常接受到这个品牌的信息。大数据就是这样强化我们的固有认知。而“杀熟”这个操作在大数据下也变得十分简单。

3.记住一点,任何情况下都要保持清醒的头脑,我们看到的信息至少不是真相全部,甚至有些还是虚假的。大数据把很多人都致盲了,它把人分成了一个又一个的圈子,圈子与圈子之间互相不理解,互相觉得对方不可理喻,就好比盲人摸象,大家都以为自己的认知才是大象,而事实上远非如此。

Ⅳ 大数据预处理的方法有哪些

1、数据清理


数据清理例程就是通过填写缺失值、光滑噪声数据、识别或者删除离群点,并且解决不一致性来进行“清理数据”。


2、数据集成


数据集成过程将来自多个数据源的数据集成到一起。


3、数据规约


数据规约是为了得到数据集的简化表示。数据规约包括维规约和数值规约。


4、数据变换


通过变换使用规范化、数据离散化和概念分层等方法,使得数据的挖掘可以在多个抽象层面上进行。数据变换操作是提升数据挖掘效果的附加预处理过程。

Ⅳ 大数据预处理包含哪些

一、数据清理


并不一定的数据全是有使用价值的,一些数据并不是大家所关注的内容,一些乃至是彻底不正确的影响项。因而要对数据过滤、去噪,进而获取出合理的数据。


数据清理关键包括忽略值解决(缺乏很感兴趣的属性)、噪声数据解决(数据中存有着不正确、或偏移期待值的数据)、不一致数据解决。


忽略数据能用全局性变量定义、属性平均值、将会值填充或是立即忽视该数据等方式;噪声数据能用分箱 (对初始数据开展排序,随后对每一组内的数据开展平滑处理)、聚类算法、电子计算机人工服务定期检查重归等方式 除去噪声。


二、数据集成与转换


数据集成就是指把好几个数据源中的数据融合并储存到一个一致的数据库文件。这一全过程中必须主要处理三个难题:模式匹配、数据冗余、数据值冲突检测与解决。


因为来源于好几个数据结合的数据在取名上存有差别,因而等额的的实体线常具备不一样的名字。数据集成中最后一个关键难题就是数据值矛盾难题,具体表现为来源于不一样的统一实体线具备不一样的数据值。


三、数据规约


数据规约关键包含:数据方集聚、维规约、数据缩小、标值规约和定义层次等。


倘若依据业务流程要求,从数据库房中获得了剖析所必须的数据,这一数据集将会十分巨大,而在大量数据上开展数据剖析和数据发掘的成本费又非常高。应用数据规约技术性则能够 完成数据集的规约表明,促使数据集缩小的另外依然趋于维持原数据的一致性。在规约后的数据集在开展发掘,仍然可以获得与应用原数据集几近同样的剖析结果。


关于大数据预处理包含哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与大数据过滤相关的资料

热点内容
企鹅号视频app叫什么 浏览:157
indd文件用ps打不开 浏览:759
磁盘清理后找不到文件 浏览:379
会计学科代码 浏览:507
文件夹选项没有了xp 浏览:167
win7更改文件格式 浏览:195
对件内文件排序通常按照什么顺序 浏览:12
win10怎样修复系统文件在哪里 浏览:772
frs文件复制服务 浏览:305
有图片文件相册不显示 浏览:354
一般网站名是什么样的 浏览:823
win10用户下有乱码文件名 浏览:973
测风塔数据有哪些 浏览:196
哪些财务数据不能作假 浏览:349
华为待机接收不到微信 浏览:199
sqlite数据库表设计 浏览:627
微信小程序可以关闭吗 浏览:81
数控编程需要掌握什么 浏览:322
找不到离线文件怎么办 浏览:134
c盘开机文件在哪里 浏览:275

友情链接