导航:首页 > 网络数据 > 在国外超市购物发现怀孕大数据

在国外超市购物发现怀孕大数据

发布时间:2023-07-24 11:39:05

大数据给零售行业带来的商业价值

大数据给零售行业带来的商业价值

在大数据推动的商业革命暗涌中,要么学会使用大数据的杠杆创造商业价值,要么被大数据驱动的新生代商业格局淘汰。

最早关于大数据的故事发生在美国第二大的超市塔吉特百货(Target)。孕妇对于零售商来说是个含金量很高的顾客群体。但是他们一般会去专门的孕妇商店而不是在Target购买孕期用品。人们一提起Target,往往想到的都是清洁用品、袜子和手纸之类的日常生活用品,却忽视了Target有孕妇需要的一切。那么Target有什么办法可以把这部分细分顾客从孕妇产品专卖店的手里截留下来呢?

为此,Target的市场营销人员求助于Target的顾客数据分析部(Guest Data & Analytical Services)的高级经理Andrew Pole,要求他建立一个模型,在孕妇第2个妊娠期就把她们给确认出来。在美国出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,那时候Target再行动就晚了,因此必须赶在孕妇第2个妊娠期行动起来。如果Target能够赶在所有零售商之前知道哪位顾客怀孕了,市场营销部门就可以早早的给他们发出量身定制的孕妇优惠广告,早早圈定宝贵的顾客资源。

可是怀孕是很私密的信息,如何能够准确地判断哪位顾客怀孕了呢?Andrew Pole想到了Target有一个迎婴聚会(baby shower)的登记表。Andrew Pole开始对这些登记表里的顾客的消费数据进行建模分析,不久就发现了许多非常有用的数据模式。比如模型发现,许多孕妇在第2个妊娠期的开始会买许多大包装的无香味护手霜;在怀孕的最初20周大量购买补充钙、镁、锌的善存片之类的保健品。最后Andrew Pole选出了25种典型商品的消费数据构建了“怀孕预测指数”,通过这个指数,Target能够在很小的误差范围内预测到顾客的怀孕情况,因此Target就能早早地把孕妇优惠广告寄发给顾客。

那么,顾客收到这样的广告会不会吓坏了呢?Target很聪明地避免了这种情况,它把孕妇用品的优惠广告夹杂在其他一大堆与怀孕不相关的商品优惠广告当中,这样顾客就不知道Target知道她怀孕了。百密一疏的是,Target的这种优惠广告间接地令一个蒙在鼓里的父亲意外发现他高中生的女儿怀孕了,此事甚至被《纽约时报》报道了,结果Target大数据的巨大威力轰动了全美。

根据Andrew Pole的大数据模型,Target制订了全新的广告营销方案,结果Target的孕期用品销售呈现了爆炸性的增长。Andrew Pole的大数据分析技术从孕妇这个细分顾客群开始向其他各种细分客户群推广,从Andrew Pole加入Target的2002年到2010年间,Target的销售额从440亿美元增长到了670亿美元。

我们可以想象的是,许多孕妇在浑然不觉的情况下成了Target常年的忠实拥泵,许多孕妇产品专卖店也在浑然不知的情况下破产。浑然不觉的背景里,大数据正在推动一股强劲的商业革命暗涌,商家们早晚要面对的一个问题就是:究竟是在浑然不觉中崛起,还是在浑然不觉中灭亡。

大数据是谁?

大数据炙手可热,但是能说清楚大数据是什么的人却不多。要真正弄明白什么是大数据,我们首先得看看Target是怎么收集大数据的。

只要有可能,Target的大数据系统会给每一个顾客编一个ID号。你刷信用卡、使用优惠券、填写调查问卷、邮寄退货单、打客服电话、开启广告邮件、访问官网,所有这一切行为都会记录进你的ID号。

而且这个ID号还会对号入座的记录下你的人口统计信息:年龄、是否已婚、是否有子女、所住市区、住址离Target的车程、薪水情况、最近是否搬过家、钱包里的信用卡情况、常访问的网址等等。Target还可以从其他相关机构那里购买你的其他信息:种族、就业史、喜欢读的杂志、破产记录、婚姻史、购房记录、求学记录、阅读习惯等等。乍一看,你会觉得这些数据毫无意义,但在Andrew Pole和顾客数据分析部的手里,这些看似无用的数据便爆发了前述强劲的威力。

在商业领域,大数据就是像Target那样收集起来的关于消费者行为的海量相关数据。这些数据超越了传统的存储方式和数据库管理工具的功能范围,必须用到大数据存储、搜索、分析和可视化技术(比如云计算)才能挖掘出巨大商业价值。

大数据的商业价值

大数据这么火,因此很多人就跟起风来,言必称大数据,可是很多人不但没搞明白大数据是什么的问题,也不知道大数据究竟能往哪些方面挖掘出巨大的商业价值。这样瞎子摸象般的跟风注定了是要以惨败告终的,就像以前一窝蜂地追逐社交网络和团购一样。那么大数据究竟能往哪些方面挖掘出巨大的商业价值呢?根据IDC和麦肯锡的大数据研究结果的总结,大数据主要能在以下4个方面挖掘出巨大的商业价值:对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动;运用大数据模拟实境,发掘新的需求和提高投入的回报率;提高大数据成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率;进行商业模式、产品和服务的创新。笔者把他们简称为大数据的4个商业价值杠杆。企业在大踏步向大数据领域投入之前,必须清楚地分析企业自身这4个杠杆的实际情况和强弱程度。

1、对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。本文开头Target的故事就是这个杠杆的案例,瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和大数据的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。比如在大数据时代之前,要搞清楚海量顾客的怀孕情况,得投入惊人的人力、物力、财力,使得这种细分行为毫无商业意义。

2、运用大数据模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。云计算和大数据分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。大数据技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。

3、提高大数据成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。大数据能力强的部门可以通过云计算、互联网和内部搜索引擎把大数据成果和大数据能力比较薄弱的部门分享,帮助他们利用大数据创造商业价值。这个杠杆的案例是关于沃尔玛的一个故事。

沃尔玛开发了一个叫做Retail Link的大数据工具,通过这个工具供应商可以事先知道每家店的卖货和库存情况,从而可以在沃尔玛发出指令前自行补货,这可以极大地减少断货的情况和供应链整体的库存水平。在这个过程中,供应商可以更多的控制商品在店内的陈设,可以通过和店内工作人员更多地接触,提高他们的产品知识;沃尔玛可以降低库存成本,享受员工产品知识提高的成果,减少店内商品陈设的投入。综合起来,整个供应链可以在成本降低的情况下,提高服务的质量,供应商和沃尔玛的品牌价值也同时得到了提升。通过在整条供应链上分享大数据技术,沃尔玛引爆了零售业的生产效率革命。

4、进行商业模式,产品和服务的创新。大数据技术使公司可以加强已有的产品和服务,创造新的产品和服务,甚至打造出全新的商业模式。这个杠杆将引用Tesco为案例。Tesco收集了海量的顾客数据,通过对每位顾客海量数据的分析,Tesco对每位顾客的信用程度和相关风险都会有一个极为准确的评估。在这个基础上,Tesco推出了自己的信用卡,未来Tesco还有野心推出自己的存款服务。

大数据的商业革命

通过以上4个杠杆,大数据能够产生出巨大的商业价值,难怪麦肯锡说大数据将是传统4大生产要素之后的第5大生产要素。大数据对市场占有率、成本控制、投入回报率和用户体验都会起到极大的促进作用,大数据优势将成为企业最值得倚重的比较竞争优势。根据麦肯锡的估计,如果零售商能够充分发挥大数据的优势,其营运利润率就会有年均60%的增长空间,生产效率将会实现年均0.5%-1%的增长幅度。在大数据这个概念炒热起来的当下,人们才发现像沃尔玛、Target、亚马逊、Tesco这样的商业巨头已经不声不响地运用了大数据技术好多年,用大数据驱动市场营销、驱动成本控制、驱动产品和服务创新、驱动管理和决策的创新、驱动商业模式的创新。许多商界骄子慨叹竞争不过Target们的不解之谜也终于告破。

在大数据推动的商业革命暗涌中,与时俱进绝不仅仅是附庸风雅的卡位之战,要么学会使用大数据的杠杆创造商业价值,要么被大数据驱动的新生代商业格局淘汰。这是天赐良机,更是生死之战。成功者将是中国产业链升级独领风骚的枭雄,失败者拥有的只有遗憾。

以上是小编为大家分享的关于大数据给零售行业带来的商业价值的相关内容,更多信息可以关注环球青藤分享更多干货

⑵ 小数据时代随机采样案例分析有哪些

如下:

第一个经典的例子是预测女孩怀孕“大数据”,2012年2月16日《纽约时报》刊登了一篇题为《这些公司是如何知道您的秘密的》报道。

文中介绍了这样一个故事:一天一位男性顾客怒气冲冲地来到一家折扣连锁店“塔吉特”这是一家仅次于沃尔玛的全美第二大零售商向经理投诉因为该店竟然给他还在读高中的的女儿邮寄婴儿服装和孕妇服装的优惠券。但随后这位父亲与女儿进一步沟通发现自己女儿真的已经怀孕了。

于是致电塔吉特道歉说他误解商店了女儿的预产期确实是8月份。这里用到的就是大数据“关联规则+预测推荐”技术。

第二个是经典的“啤酒和尿布”的例子,这个例子比较早,讲的是基于关联规则分析来预测超市里面顾客购买行为规律。

20世纪90年代美国沃尔玛超市中,超市管理人员分析销售数据时发现了一个令人难以理解的现象:

在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。

在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲去超市买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒。

如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而去另一家可以一次同时买到啤酒与尿布的商店。

由此,沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物,从而获得了很好的商品销售收入。

第三个案例是近年来才炒得比较火热的例子“谷歌预测流感”,是谷歌通过搜索引擎里面的关键词检索日志的时间序列数据成功预测了流感爆发的时间和规模。人们输入的搜索关键词代表了他们的即时需要,反映出用户情况。

为便于建立关联,设计人员编入“一揽子”流感关键词,包括温度计、流感症状、肌肉疼痛、胸闷等。只要用户输入这些关键词,系统就会展开跟踪分析,创建地区流感图表和流感地图。

为验证“谷歌流感趋势”预警系统的正确性,谷歌多次把测试结果与美国疾病控制和预防中心的报告做比对,证实两者结论存在很大相关性。

第一个例子背后是基于精准营销,是大数据针对个人级别的应用,第二个例子能够有效预测零售商需求,属于企业级别应用,而第三个例子则是地区级别和国家级别的应用。由此可看出,当大数据真正走进生活、走进社会,其施展能量的力度越来越大,越来越强。

所以国家、教育部和企业越来越重视大数据和人工智能的开发和应用,让我们跟随趣学人工智能一起学习它吧!更多内容请关注趣学人工智能公众号,微信搜索趣学人工智能里面有更多视频、音频和文字内容。

数据时代为适应不同类型、不同发展阶段企业或者个人的上网要求,提供有包括域名注册、主机、企业邮局、系统集成在内的完整的网络平台服务。

构建有自己的电子商务寄放平台;网络系统均以高速独享带宽连接在骨干网上,服务器托管在电信品质的数据中心内,全面的备份系统、防火墙系统、负载平衡系统,专业人员全天候监控、维护,保证网站快速、可靠、稳定地运行。

数据时代秉承客户至上、服务至上的经营理念,以卓越的网络服务品质、专业的技术服务实力、职业的客户服务团队保障您在21世纪的信息高速路上驰骋。

又以稳固与发展、求实与创新的精神,尊重人才、注重技术,使用户在享受信息科技发展最新成果的同时不断获得最大的收益,为推动中国信息产业的发展、促进知识经济的崛起作出最大的贡献。

⑶ 大数据告诉你:亲爱的,你怀孕了

大数据,英文翻译为Big Data,听上去科技感十足的一个词,到底跟我们的生活有什么关系呢?我们不妨先从一个故事开始认识一下它。

在信息化领域,国外很多企业走在时代前列。美国一家零售连锁商塔吉特,很多年前就开始利用销售过程汇总的数据进行分析。有一段时间,塔吉特公司通过他们所有门店里女性的消费记录数据,进行“怀孕预测”。对于零售商来说,发现一个顾客是否怀孕非常重要。因为一旦有了小孩,就意味着一个家庭的消费观念会发生很大变化,如果能预测消费者的怀孕趋势就能及时向她们推送孕期每个阶段对应的优惠券,从而刺激消费。值得注意的是,有一天,一个中年男人怒气冲冲的来到塔吉特的一家零售店,他向商店经理投诉:“我女儿还是高中生,你们却给她邮寄婴儿服和婴儿床的优惠券,你们这样的行为是在鼓励她怀孕吗?”。塔吉特商店的经理几天后打电话向这个男人道歉,这个男人却感到非常抱歉,他跟塔吉特的经理道歉说:“我跟女儿谈过了,她的预产期是8月份,是我自己没有意识到这件事情。”

这就是一个典型的大数据案例, 大数据如此神奇,它可能比你的父母更了解你的小秘密。你喜欢什么款式的衣服,你最爱哪家甜品店,你最喜欢的明星是谁……大数据就像你的影子,对你了如指掌。

提起大数据,人们最先想到的一本书往往是《大数据时代》。

《大数据时代》的作者维克托•迈尔•舍恩伯格被誉为“大数据商业应用第一人”,十几年前就已经洞察到大数据的趋势,一直潜心研究大数据技术,不仅在哈佛大学、牛津大学等著名学府任教,也为微软、IBM等知名企业提供咨询服务,同时还是众多政府高层的智囊团。维克托将自身对大数据技术的研究与商业实践、政府决策相结合,进一步获得对大数据的全球视野。

我们身处一个数据大爆炸的时代,世界的数据以一种超乎想象的速度裂变。哲学上讲:量变引起质变。当数据累积到一定程度,必然引起质变。数据的价值也就由此诞生。维克托在《大数据时代》中强调了大数据给我们带来的三个转变:
更多:不是随机样本,而是全体数据
更杂,不是精确性,而是混杂性
更好,不是因果关系,而是相关关系

大数据的出现对社会科学提出了挑战,社会科学是非常依赖样本分析、研究和调查问卷的学科,而大数据时代,数据成为最容易获得的信息,我们不再受困于数据量的多少,开始利用所有的数据。

有数据证明,采用样本分析法的正确率可达97%。看上去3%的错误率似乎可以接受,但也要就事论事。现在大数据的核心在于预测,为了更精准的预测,自然是越少错误率越高,而当数据量足够大时,当样本=总体时,数据预测的准确性就能大大提高。

大数据以前的时代是,用尽可能少的数据获得尽可能多的信息,当人类进入到大数据时代时,是用尽可能多的数据获得信息。

每次出去旅游,想抢到便宜的机票简直是一场大战。打开购票网站,今天刷一下贵了100,明天刷一下便宜了200,后天再刷又贵了200,每次我都想怎么才能知道机票什么时候最便宜。原来,这个功能已经有公司实现了。有一家预测机票价格的公司叫Farecast,Farecast的预需要海量数据的支持,为了提高预测的准确度,Farecast收集了么过商业航空产业中每一条航线上每一架飞机内每一个座位,在一年内的综合票价记录。如今,Farecast已经有大约2000亿条的飞行数据,最终实现票价预测的准确度高达75%。如果没有海量数据的支持,所谓的票价预测基本约等于0。

Farecast的创始人埃齐奥尼说:“这只是一个暂时性的数据,随着你收集的数据越来越多,你的预测结果会越来越准确。”

海量数据的出现,也意味着大量混杂的、不精确的、甚至错误的数据出现。大数据时代95%的数据都是混乱的,如果还坚持传统“小数据”的精确算法,那将彻底错过大数据的价值。

为什么“小数据”要精确?

因为“小数据时代”或者像上文提到的“样本分析法”中,能收集到的信息量有限,所以必须保证数据尽量精确,才能提高预测的准确度。这是一个概率学问题,简单来说,给你三个苹果,只有一个是好的,那你挑到好苹果的概率是1/3,如果有100个苹果,即使有一半都是坏的,挑到好苹果的概率也有1/2。

胡适曾经讽刺过“差不多先生”,因为差不多先生的口头禅就是:凡事只要差不多就好了,何必太较真呢?“大数据”从某种角度来说也是一位“差不多先生”,要让我们习惯他可能还需要时间。

小朋友很小的时候就要读《十万个为什么》,培养对世界的好奇心,学习的过程就是搞清楚每一个现象背后的原因,这是我们从小到大养成的惯性思维。

大数据时代,这种思维需要变一变了。 数据量的剧增,使得事物与事物之间的联系越来越复杂,通过复杂的相关关系,大数据犹如神探破案,找出蛛丝马迹。现在,只需要知道“是什么”就够了,没必要知道“为什么”。

建立在相关关系分析法基础上的预测是大数据的核心。据统计,亚马逊成交量的三分之一都是来自于相关推荐的购买。当我在亚马逊上购买这本《大数据时代》时,系统还会同时给我推荐另外几本相关的书,比如吴军的《智能时代》,涂子沛的《大数据》等,这些书正好帮我构成了一个“大数据”的主题阅读书单,这样我就很可能把这一系列书全部加入购物车。

随着技术的发展,收集和分析数据的成本越来越低,人们更热衷于收集海量的数据,来预测分析可能出现的问题。比如,大数据可以用来预测汽车故障,这种功能很适合物流、快递行业。大型的物流快递公司会有数量众多的运输车队,一旦车在运输过程中出现故障,造成的延误、再装载损失都很严重。通过传感器检测汽车各种零件的使用情况,能及时预测哪些零件可能在什么时候出现故障,以便提前进行检查维修,这样就能大大减少成本损失。这种预测并不能告诉你,“为什么”会出现故障,而对于快递公司来说,也只需要只知道“是什么”将出现故障就足够了。

大数据时代,我们的生活将发生翻天覆地的变化,就像望远镜能让我们感受浩瀚的宇宙星空,显微镜能让我们观察最小颗粒的微生物。大数据是一种收集和分析海量数据的新技术,能帮助我们更好地认识世界、理解世界。大数据不是冰冷的事实,它其实分散在日常生活的各个角落,从思维模式上先给我们带来一场变革,然后当我们用大数据的思维看世界时,才发现“凡是过去,皆为序曲”。

未来已来,大数据时代裹挟着未来世界的新算法,新技术像潮水一样涌来,只有勇于拥抱变化的人才能急流勇进。 大数据时代,更多的数据,更多不确定性,更复杂的相关关系,提供了“更多,更快,更好”的可能。

⑷ Tiger:我眼中的大数据-新生大学分享(1)

【作者按:本文为2016/10/15晚在新生大学社群的公开分享,旨在和大家探讨个人对大数据的一点浅见。虽然专业知识和写作水平有限,但哪怕能帮到一个人亦会欣慰,同时也期待能得到更多反馈。】

** 1. 认知误区**

在日常生活和工作中,我发现很多人对大数据的理解存在如下两个误区 :

现在很多人,言必称大数据。可是,大数据这个说法本身非常模糊,不知道他们在说大数据时具体指什么。这让我想起许多年前在国内流行的另外一个概念:纳米,我相信你一定很耳熟。那会儿,随便逛个商场或者看个电视,你都会发现铺天盖地的打着纳米旗号的广告袭来:什么“纳米冰箱”,“纳米空调”,“纳米彩电”。。。 就好像纳米是能治百病的灵丹妙药,任何东西只要贴上“纳米”的标签就好使了,就升值了,就高大上了。
今天,很多人对待大数据的态度和纳米一样,人云亦云,自我忽悠,然后互相忽悠。

当你问很多言必称大数据的人:大数据到底是什么?不知道大数据是什么?大数据是怎么用的?大数据到底对你的生活带来了哪些收益和影响呢?80%的人都会一脸懵逼,他们根本说不出所以然。当然,我不是说每个人都这样,但这样的人的确不少。

个人以为,实事求是的态度很有必要,理应推崇。
知之为知之,不知就知乎之。
不知道没关系,但如果硬是为了虚荣心去说大数据,为赋新词强说愁,这样的态度没有益处。

如果你真的觉得大数据这个东西非常好,既有趣也有用,那我们就卷起袖口,去搞懂细节,搞懂它的前世今生,乃至它未来的发展趋势。这样的态度既接地气,更能增加个人价值。

2. 数据分析

在和大家探讨真正的“大数据”之前,我们先聊聊数据分析。
数据分析实际上已经存在很久了,它根本不是什么新东西。
它不是什么新事物,也并不神秘,一点都不!
你会用Excel罢?Excel就是用来做数据分析的,千万不要小看它。而数据分析比Excel的历史还要早的多。
数据分析大致可分成四个层面:
首先,获得数据;
其次,从数据中提取信息;
再次,从信息中提炼出知识;
最后,通过知识发掘智慧。
总结下来就是:Data(数据)->Information(信息)->Knowledge(知识)->Wisdom(智慧)。
从另外一个角度来看,数据分析是技术和艺术的混合体:

3. 大数据的通用特征

大数据目前没有一个通用的定义,个人理解的大数据具备如下几个特征:

4. 大数据的用途

那么,大数据有什么用呢?其实有很多著名的例子,如Alphago干掉了韩国殿堂级棋手李世石,当然,这样的例子已经烂大街了。
从我个人而言,我会分享一个亚马逊的例子。我是亚马逊的资深用户,用了八年多了,所以它有我很多的消费行为数据,它知道我的购物的爱好、特征和规律。这里有一个截图:

当我登录亚马逊账户之后,它的推荐页面就是上面这样。这个页面上展示的商品就是它根据我之前买过的一些商品,通过推荐算法猜测我喜欢什么种类的商品,还会买什么商品。总之就是通过已买商品的各个特征去给你做推荐。

另外,大数据还可以用来找男女朋友。这里也有一个真实的故事:大概在前几年,美国的加州大学洛杉矶分校(UCLA)有个数学系的博士生,大龄单身宅男,就为找女朋友的事情发愁。但他是个极客,就想办法写了一个程序(爬虫),爬虫里面设定了许多符合他个人喜好的规则,然后用这个爬虫到一些婚恋网站上去爬取目标对象。这样就找到一些符合他喜好的目标对象,同时,在这个过程中自然排除掉了很多不符合他设定参数的目标。通过和筛选后的目标对象约会,最后他果然找到一个非常合适的女朋友,然后快乐地在一起。

大数据的应用实例还有很多,曾经在2012年在纽约时报上登过一篇报道叫《大公司如何窃取你的秘密?》,文中一个例子就是关于Target超市的大数据应用(美国一家超大规模的连锁超市)。报道称Target给明尼苏达州一户人家的女儿寄婴儿用品的优惠券,但是这个女孩还是高中生。他爸爸看到优惠券后非常震怒,认为有诱导未成年人怀孕的嫌疑,就去找当地超市理论。当时超市的经理比较诚恳,一脸懵逼地给顾客道歉。后来,这个父亲却主动打电话给超市过来道歉,说回家和女儿交流后发现她真的怀孕了。

剧情180度大反转!

这到底是怎么回事?原来,是Target超市的数据部门开发的怀孕预测模型,根据算法结合购物记录发现这个女孩极有可能怀孕。所以,在得到这样一个判断后,他们的营销部门就给这样的潜在的目标客户精准推送母婴商品的优惠券。这事听起来还是蛮可怕的,大数据虽然没见过你,但它可能对你了如指掌,知道你是什么样的人,家住哪,收入什么水平,开什么样的车,穿什么衣服,抽什么烟等等。

大数据甚至还可以做舆情监督和民意调查。比如说,微信在2016年就做了一个大数据分析,推测全国人民的心情,最后的结论是,每逢节日大家的心情就特别好,其中中秋和春节的心情格外好;年轻人相对更多愁善感,老年人反而更乐观开朗阳光,很有意思。

根据上面的例子,我们对大数据的用途做一个抽象和总结。以上的例子告诉我们,大数据可以用来 从已知到未知 ,就是说根据手上掌握的一些已知的信息可以推测出未知的规律和趋势,就像亚马逊猜我喜欢购买的商品,或者像Target推测高中生已经怀孕了,或者像UCLA博士生通过写程序找到女朋友。这些都是从已知到未知的推理。
大数据另外一个用途,就是可以 纠正错觉 或错误认知。因为,真实的原始数据是不会撒谎的,这里面包含了许多信息,甚至一些潜在的反常识的东西。就以我曾经做过的一个分析 《顶级风投的宿命》 为例。因为之前有过创业经历,个人会对投融资比较敏感。而当时创投界有所谓的风口论,比如O2O、生鲜电商等,这些方向的互联网公司特别容易拿到融资。那我在做完相关的数据分析之后发现:
真正一流的投资机构从不会赌所谓的风口,他们会坚持去投资一些商业本质更清晰的的公司和业务模式,像电子商务、对企业的服务、文化娱乐等方向。

而这个认识是在我做数据分析之前完全不知道的,可以说颠覆了我此前的认知。进一步,我之前对风口论的认知就是错觉,而这个错觉就被数据分析很好地推翻了。所以,我认为大数据的第二个功能就是纠正错觉。

大数据分析确实有些必备的知识集合,这里有幅来自IBM研究院的图,阐明了数据科学的必备知识领域。

⑸ 现在国外有应用大数据的案例

现在国外有应用大数据的案例

现在国外有应用大数据的案例,案例是一个父亲有一个高中生的女儿,接到了一个促销的广告,是关于婴儿用品的广告,这个父亲勃然大怒,说商家无良,为了促销向我的高中生的女儿促销婴儿产品。但是过了一两个星期,他感到非常的内疚,因为他对于商家的这种态度是错误的,原因是他的高中的女儿确实怀孕了。为什么商家会发现这个问题?商家实际上就是通过在商场的一些数据挖掘和比对,发现这个女孩子曾经在商场里购买过类似的一些商品,在有一些类似的货架面前驻足观看,而且这个频度很高,商家对于后台大数据的分析,筛出潜在客户,发出商业广告。

这可以说是一个很典型的案例,给了我们很多的思考,我们可以从很早的MBA的课程里面发现这些案例,这些案例都告诉我们一条,我们要去关注外部的一些数据,通过这些外部数据的获取研究,这是未来保险业非常重要的能力。

3、保险业应该是未雨绸缪,应该及早的对于大数据时代有一个未雨绸缪的观念,或者有这么一个未雨绸缪的心态。我基本的说法就是,如果我们把它抽象的讲,大数据时代的数据能力将成为未来保险企业核心竞争力的核心。中国有一句古话叫识时务者为俊杰,最重要的前提是认识,这个行业能够及早的认识到这一点,能够及早的做相关的一些准备是非常重要的。我讲这个行业需要一种大数据的思维,这是我们面向未来需要具备的一个非常重要的能力,你能够基于大数据的思维,能够全面的理解大数据的时代,把某一个产品、客户的服务放在大数据之下思考这个问题,这是非常重要的。

得人才者得天下。有一个数据说未来最热门的行业是数据科学家,所以数据工作者,数据工程师、数据科学家,将是未来这个公司的核心资源。这些人他已经不同于我们传统意义上的数据人才,不是我们原来基于IT的,对于数据库研究、管理、应用的人才,我讲这是基于大数据时代的数据人才。他们是什么?这些面向未来的数据人才关键的能力是什么?观察力和想象力。未来数据,科学家的核心能力是想象力和观察力,他能够观察到某一个社会现象背后的数据结构,把这个现象背后的数据结构挖掘出来,整合成一个新的商业模式,就创造了一个新的商业机会。有想象力,还能够知道怎么实现这个想象力,当然这中间数据是一个核心的要素。

我们要培育一个数据获取的能力,你知道数据在哪里。数据处理的能力,怎么构建数据之间的关系。我讲的数据处理不是传统意义上的数据处理,而是学会处理数据之间的关系,从这个关系当中找到规律性的东西,从规律性的背后发现商业模式。数据思维的能力。要学会基于数据的思维。

这对我们未来保险业所必须个具备的能力。当然,背后保险公司有很多的事情要做。比如传统以来我们一直做商业资本的,我们也知道随着非结构数据的大量应用,或者我们需要更多的对象处理非结构数据,我觉得未来的人工智能,专家的支持体系都会变得异常的重要。

如果要总结起来讲,发现数据的关联性,构建数据的商业模式,未来整个社会是一个数据社会寻宝的重要工具和能力。这是关于保险业的未雨绸缪所需要做的事情。时间的关系不占太多的时间。

总结起来说我还是这个观点,我认为大数据时代会比我们想象的来得快。大数据时代几乎跟我们每一个人密切相关。任何一个行业都可以忽视大数据时代到来的话,保险不行。大数据在根本上改变保险业的业态,做得不好,会使保险业传统的经营空间受到极大的压缩,做得好会为保险业开拓一个全新的领域,广阔的空间。但是最重要的是有赖于这个行业对于大数据时代到来的认识、警惕和应对。我说的不一定对,这是最近做的思考,跟大家做一个分享,我算是抛砖引玉,

⑹ 大数据要注重以人为本

大数据要注重以人为本
大数据为什么会这么火?上世纪80年代,未来学家托夫勒在那本闻名世界的《第三次浪潮》一书中就预言过:“如果说IBM的主机拉开了信息化革命的大幕,那么大数据才是第三次浪潮的华彩乐章。”确实,自从计算机被发明并投入应用以来,作为信息化的主要产物——数据就呈现出了前所未有的快速增长,尤其是互联网逐步的普及,更是加速了数据产生的规模。
“大数据”无疑是当下的一个时髦词汇。如果使用Google搜索“Big data”,你可以得到636,000,000 条结果。目前,大数据在全球所形成的市场规模超过了50亿美元,预计到2017年将增长到500亿美元以上。
在大数据如火如荼增长的背后,是人们参与数据制造的数量的增加。目前,全球的互联网网民约在25亿左右,中国的网民总数在6亿左右,按照这种发展趋势,全球人口一半成为网民可能在2016年左右发生。正是有了这么多“个体”或“小我”的聚集,才带来了大数据的时代。而开发应用大数据,也一定要重视“小我”,让大数据开发出的结果更加人性化、更具合理性。
基于大数据开发出的精准营销等一系列新的商业模式,正在推动营销理念和商业模式的变革。但即便这种已经具备了“个性化”的模式,还是缺少“人情味”。美国一家连锁超市曾经根据某位消费者的购物数据预测出她已经怀孕,就将婴儿尿片和童车的优惠券直接派发给了她,但却遭到了其父亲的强烈抗议。原因是这个女孩还未满18岁,而且她和家人都还没有意识到自己已经怀孕的事实。虽然这被看作是大数据开发应用的一个典型案例,但实际上却暴露了这种精准营销背后存在的社会伦理缺陷。
现在,很多网站根据用户使用网络进行商品搜索或者网上购物的记录,直接在用户再次访问网站时加载相关广告等作法,往往会引起用户的反感。这种只顾商业利益,而不考虑用户感受的营销,实际上变相地剥夺了消费者的权利,这些作法本身也削减了消费者的购物欲望,起到适得其反的作用。
大数据开发目前除了在工业领域、商业领域应用外,也在向社会管理领域大步迈进着。在《爆发》这本讲述大数据时代的代表性着作中,作者巴拉巴西有这样的判断:人类行为中有93%是可以预测的。正是这个判断,增添了一些人在社会管理领域应用大数据的激情。但要看到,这个判断的前提是要对全球每个个体的24小时、每分每秒,甚至一生的行为进行数据采集。这显然在短时间内是无法实现的。
即便是我们的技术能力达到了那个水平,但是对一个有血有肉的人的行为进行预测,对由千百万个活生生的个体所构成的社会进行精确性管理,除了用好数据外,更要注重遵循人和社会自身的特点和规律,这样才能使大数据时代的社会管理更具合理性。如果完全把社会管理模式建立在数据的分析和应用上,这样的管理方式很可能会给人类社会的发展带来巨大的风险。

⑺ 大数据营销知识点总结

一、走进大数据世界

大数据的特征(4V):

1.  数据的规模性

2.   数据结构多样性

3.   数据传播高速性

4.   大数据的真实性、价值性、易变性;

结构化数据、半结构化数据、非结构化数据

大数据处理的基本流程图

大数据关键技术:

1.  大数据采集

2.   大数据预处理

3.  大数据存储及管理

4.   大数据安全技术

5.  大数据分析与挖掘

6.   大数据展现与应用

二、大数据营销概论

Target 百货客户怀孕预测案例

大数据营销的特点:

1.   多样化、平台化数据采集: 多平台包括互联网、移动互联网、广电网、智能电视等

2.   强调时效性: 在网民需求点最高时及时进行营销

3.   个性化营销: 广告理念已从媒体导向转为受众导向

4.   性价比高: 让广告可根据时效性的效果反馈,进行调整

5.   关联性: 网民关注的广告与广告之间的关联性

大数据运营方式:

1.   基础运营方式

2.   数据租赁运营方式

3.   数据购买运营方式

大数据营销的应用

1.   价格策略和优化定价

2.   客户分析

3.   提升客户关系管理

4.   客户相应能力和洞察力

5. 智能嵌入的情景营销

6.   长期的营销战略

三、产品预测与规划

整体产品概念与整体产品五层次

整体产品概念: 狭义的产品: 具有某种特定物质形态和用途的物体。

产品整体概念(广义):向市场提供的能够满足人们某种需要的

                      一切物品和服务。

整体产品包含:有形产品和无形的服务                          

整体产品五层次:潜在产品、延伸产品、期望产品、形式产品、核心产品

 

大数据新产品开发模型:

1.   需求信息收集及新产品立项阶段

2.  新产品设计及生产调试阶段

3.  小规模试销及反馈修改阶段

4.   新产品量产上市及评估阶段

产品生命周期模型

传统产品生命周期划分法:

(1)销售增长率分析法

  销售增长率=(当年销售额-上年销售额)/上年销售额×100%

销售增长率小于10%且不稳定时为导入期;

销售增长率大于10%时为成长期;

销售增长率小于10%且稳定时为成熟期;

销售增长率小于0时为衰退期。

(2)产品普及率分析法

    产品普及率小于5%时为投入期;

    普及率在5%—50%时为成长期;

    普及率在50%—90%时为成熟期;

    普及率在90%以上时为衰退期。

大数据对产品组合进行动态优化

产品组合

       销售对象、销售渠道等方面比较接近的一系列产品项目被称为产品线。产品组合是指一个企业所经营的不同产品线和产品项目的组合方式,它可以通过宽度、长度、深度和关联度四个维度反映出来

四、产品定价与策略

大数据定价的基本步骤:

1.   获取大数据

2.   选择定价方法

3.   分析影响定价因素的主要指标

4.  建立指标体系表

5.   构建定价模型

6.  选择定价策略

定价的3C模式:成本导向法、竞争导向法、需求导向法

影响定价的主要指标与指标体系表的建立

影响定价因素的主要指标:

1.  个人统计信息:家庭出生、教育背景、所在地区、年龄、感情状况、家庭关系等。

2.   工作状况:行业、岗位、收入水平、发展空间等

3.  兴趣:健身与养生、运动和户外活动、娱乐、科技、购物和时尚等

4. 消费行为:消费心理、购买动机等。

定价策略:

精算定价: 保险、期货等对风险计算要求很高的行业

差异定价: 平台利用大数据对客户建立标签,分析对产品的使用习惯、需求判断客户的忠诚度,对不同客户进行差别定价

动态定价: 即根据顾客认可的产品、服务的价值或者根据供需状况动态调整服务价格,通过价格控制供需关系。动态定价在提高消费者价格感知和企业盈利能力方面起着至关重要的作用。

价格自动化 :根据商品成本、市场供需情况、竞争产品价格变动、促销活动、市场调查投票、网上协商、预订周期长短等因素决定自身产品价格

用户感知定价 :顾客所能感知到的利益与其在获取产品或服务中所付出的成本进行权衡后对产品或服务效用所做出的整体评价。

协同定价: 是大数据时代企业双边平台多边协同定价策略

价格歧视:

一级 :就是每一单位产品都有不同的价格,即商家完全掌握消费者的消费意愿,对每个消费者将商品价格定为其能够承受的最高出价;

二级 :商家按照客户的购买数量,对相同场景提供的、同质商品进行差别定价;

三级 :可视为市场细分后的定价结果,根据客户所处的地域、会员等级等个人属性进行差别定价,但是对于同一细分市场的客户定价一致。

五、销售促进与管理

    促销组合设计概念

大数据促销组合设计流程

精准广告设计与投放

[if !supportLists]l [endif] 广告设计5M:任务(Mission),预算(Money),信息(Message),媒体(Media),测量(Measurement)。

通过用户画像的进一步挖掘分析,企业可以找出其目标消费群体的广告偏好,如平面广告的配色偏好,构图偏好,视频广告的情节偏好,配乐偏好,人物偏好等,企业可以根据这些偏好设计出符合目标消费群体审美的广告创意,选择消费者喜欢的广告代言人,做出能在目标消费群体中迅速传播开来的广告。

在媒体决策方面,利用大数据综合考虑其广告目的、目标受众覆盖率、广告信息传播要求、购买决策的时间和地点、媒体成本等因素后,有重点地采用媒体工具。企业可以在确定前述影响变量后,通过大数据的决策模型,确定相对最优的媒体组合。

六、客户管理

    大数据在客户管理中的作用

1.   增强客户粘性

2.   挖掘潜在客户

3.   建立客户分类

    客户管理中数据的分类、收集及清洗

数据分类:

描述性数据: 这类数据是客户的基本信息。

如果是个人客户,涵盖了客户的姓名、年龄、地域分布、婚姻状况、学历、所在行业、职业角色、职位层级、收入水平、住房情况、购车情况等;

如果是企业客户,则包含了企业的名称、规模、联系人和法人代表等。

促销性数据: 企业曾经为客户提供的产品和服务的历史数据。

包括:用户产品使用情况调查的数据、促销活动记录数据、客服人员的建议数据和广告数据等

交易性数据: 这类数据是反映客户对企业做出的回馈的数据。

包括历史购买记录数据、投诉数据、请求提供咨询及其他服务的相关数据、客户建议数据等。

收集:

清洗:

首先,数据营销人需要凭借经验对收集的客户质量进行评估

其次,通过相关字段的对比了解数据真实度

最后,通过测试工具对已经确认格式和逻辑正确数据进行测试

客户分层模型

客户分层模型 是大数据在客户管理中最常见的分析模型之一,客户分层与大数据运营的本质是密切相关的。在客户管理中,出于一对一的精准营销要求针对不同层级的客户进行区别对待,而客户分层则是区别对待的基础。

RFM客户价值分析模型

时间(Rencency):

     客户离现在上一次的购买时间。

频率(Frequency):

     客户在一定时间段内的消费次数。

货币价值(MonetaryValue):

    客户在一定的时间内购买企业产品的金额。

七、 跨界营销

利用大数据跨界营销成功的关键点

1.   价值落地

2.  杠杠传播

3.   深度融合

4.   数据打通

八、精准营销

    精准营销的四大特点

1.   可量化

2.   可调控

3.  保持企业和客户的互动沟通

4.  简化过程

精准营销的步骤

1.  确定目标

2.  搜集数据

3.   分析与建模

4.  制定战略

九、商品关联营销

       商品关联营销的概念及应用

关联营销:

关联营销是一种建立在双方互利互益的基础上的营销,在交叉营销的基础上,将事物、产品、品牌等所要营销的东西上寻找关联性,来实现深层次的多面引导。

关联营销也是一种新的、低成本的、企业在网站上用来提高收入的营销方法。

       关联分析的概念与定义

最早的关联分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顾客购买行为的规律,发现连带购买商品,为制定合理的方便顾客选取的货架摆放方案提供依据。该分析称为购物篮分析。

电子商务领域: 关联分析可帮助经营者发现顾客的消费偏好,定位顾客消费需求,制定合理的交叉销售方案, 实现商品的精准推荐 ;

保险公司业务: 关联分析可帮助企业分析保险索赔的原因,及时甄别欺诈行为;

电信行业: 关联分析可帮助企业发现不同增值业务间的关联性及对客户流失的影响等

简单关联规则及其表达式

事务:简单关联分析的分析对象

项目:事务中涉及的对象

项集:若干个项目的集合

简单关联规则 的一般表示形式是:前项→后项(支持度=s%,置信度=c%)

或表达为:X→Y(S=s%,C=c%)

例如:面包->牛奶(S=85%,C=90%)

            性别(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)

支持度、置信度、频繁项集、强关联规则、购物篮分析模型

置信度和支持度

support(X→Y)= P(X∩Y)                  

confidence(X→Y)= P(Y|X)

十、评论文本数据的情感分析

       商品品论文本数据挖掘目标

电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。评论信息中蕴含着消费者对特定产品和服务的主观感受,反映了人们的态度、立场和意见,具有非常宝贵的研究价值。

针对电子商务平台上的商品评论进行文本数据挖掘的目标一般如下:

分析商品的用户情感倾向,了解用户的需求、意见、购买原因;

从评论文本中挖掘商品的优点与不足,提出改善产品的建议;

提炼不同品牌的商品卖点。

商品评论文本分析的步骤和流程

商品评论文本的数据采集、预处理与模型构建

数据采集:

1、“易用型”:八爪鱼、火车采集器

2、利用R语言、Python语言的强大程序编写来抓取数据

预处理:

1文本去重

检查是否是默认文本

是否是评论人重复复制黏贴的内容

是否引用了其他人的评论

2机械压缩去词

例如: “好好好好好好好好好好”->“好”

3短句删除

原本过短的评论文本      例如:很“好好好好好好好好好好”->“好”

机械压缩去词后过短的评论文本   例如:“好好好好好好好好好好”->“好”

4评论分词

文本模型构建包括三方面:情感倾向分析、语义网络分析、基于LDA模型的主体分析

 

情感倾向分析:

基于情感词进行情感匹配

对情感词的倾向进行修正

对情感分析结果进行检验

语义网络分析:

基于LDA模型的主体分析

十一、大数据营销中的伦理与责任

       大数据的安全与隐私保护

数据安全:一是保证用户的数据不损坏、不丢失;二是要保证数据不会被泄露或者盗用

 

大数据营销中的伦理风险:用户隐私、信息不对称下的消费者弱势群体、大数据“杀熟”

大数据伦理困境的成因:

用户隐私意识淡薄

用户未能清晰认知数据价值

企业利益驱使

] 管理机制不够完善

大数据伦理构建的必要性:企业社会责任、用户与社会群体的维系

这些是我按照老师讲的课本上的内容结合PPT总结出来的《大数据营销》的重点。

⑻ 大数据与隐私安全并非矛盾体

大数据与隐私安全并非矛盾体
大数据的发展,带来的社会价值和商业价值是不言而喻的,因此同时,隐私安全问题也为很多人所诟病,然而大数据与隐私安全真的是一对矛盾统一体吗?其实并非如此,这两者是完全可以兼容的。
有一个经典案例被从事大数据的人常常提到。
一位生活在美国的父亲怒气冲冲地跑到一家超市与经理大吵,原因是只有15岁的女儿购物后,回家发现商品中被加入了很多针对婴儿孕妇商品的广告。
两周后,父亲向经理道歉,这时他才知道自己女儿已经怀孕近两个月,父女都不知道,可是数据分析公司已经根据她女儿近期的网络数据预测到,接着把数据推送给超市,告诉他们可能有一个已经怀孕的顾客正在购物。
还有一个离我们比较近的例子。华东师大数据中心的预警系统模块之一,餐饮预警系统可以对学生的餐饮消费数据进行统计分析,发现低于警戒值就会发出短信慰问,确定学生是否有经济困难。
这就是大数据洞察人的方式。在体会到大数据神奇力量的同时,也让很多人对自身数据安全而担忧。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,也成为人身安全的一部分;另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
对一般用户的担忧,普通用户如果要真正融入大数据时代,享受个性化专属信息服务,不得不牺牲一部分个人隐私。
政府和业界需要做的,是设计非常苛刻严格的法律条例和行业规则,全力打击那些除了提供非侵入性的或用户同意的服务外,以伤害用户的方式利用用户隐私牟利的企业。通过提高对侵害用户隐私行为的惩罚力度,使得这种行为本身变得得不偿失,这才是根本保护治理数据安全的办法。
大数据对技术和应用所带来的挑战是全方位的。数据资产化后,数据监护将成为一个新的核心问题,是对数据的产生、收集、保存、维护、处理、利用的整个生命周期的管理。

阅读全文

与在国外超市购物发现怀孕大数据相关的资料

热点内容
企鹅号视频app叫什么 浏览:157
indd文件用ps打不开 浏览:759
磁盘清理后找不到文件 浏览:379
会计学科代码 浏览:507
文件夹选项没有了xp 浏览:167
win7更改文件格式 浏览:195
对件内文件排序通常按照什么顺序 浏览:12
win10怎样修复系统文件在哪里 浏览:772
frs文件复制服务 浏览:305
有图片文件相册不显示 浏览:354
一般网站名是什么样的 浏览:823
win10用户下有乱码文件名 浏览:973
测风塔数据有哪些 浏览:196
哪些财务数据不能作假 浏览:349
华为待机接收不到微信 浏览:199
sqlite数据库表设计 浏览:627
微信小程序可以关闭吗 浏览:81
数控编程需要掌握什么 浏览:322
找不到离线文件怎么办 浏览:134
c盘开机文件在哪里 浏览:275

友情链接