㈠ 大数据的就业前景和就业方向
大数据的就业前景和就业方向如下:
前景:从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
从近几年招聘情况来看,大数据开发岗位的数量明显比较多,而且不仅需银渣要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
大数据:
大数据,或称巨量资料,锋肆悄指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托迈尔舍恩伯格及肯尼斯库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)雹尺、Veracity(真实性)。
㈡ 大数据专业的就业前景分析
大数据专业的就业前景非常广阔,因为大数据技术已经成为各个行业和领域中不可或缺的一部分。以下是大数据专业就业前景的分析:
需求量大:随着大数据技术的发展和应用,各行各业对大数据人才的需求量越来越大,尤其是金融、电商、互联网、物流、医疗健康、政府等领域,这些坦扮领域对大数据人才的需求量将持续增长。
㈢ 大数据的就业怎么样
1.人才缺口大
大数据专业毕业以后主要从事大数据分析工作,该岗位目前人才缺口很大,学会大数据分析就等于拿到了入职大企业和高薪资大门的钥匙。根据统计显示,仅北京地区1天需求量达到15680个。
2.各行各业需求上涨
像金融,电商,游戏,医疗,未来教育,社交等行业都需要大数据分析人员袜扰,需求量很大。
3.大城市机会多工资高
大数据专业人才的需求主要集中在一线一线城市,在大城市学到的东西更多,同样薪资水平也高,北京地区的大数据分析平均月工资就达到了20050元。
从人才缺口和需求上涨到高薪就业,都体现出了大数据专业是一个就业前景很好的专业。
大数据专业就业三大方向
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
大数据专业人才就业薪资
1基础人才:数据分析师
北京数据分析平均工资:?0?610630/月,取自15526份样本,较2016年,增长9.4%。
数据分析师岗位职责
业务类别:技术
业务方向:数据分析
工作职责:
1.根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;
2.负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测;
3.参与数据挖掘模型的构建、维护、部署和评估;
4.整理编写商业数据分析报告,及时发现和分析其中变化和问题,为业务发展提供决策支持;
5.独立完成项目需求管理、方案设计、实施管理和项目成果质量的把控;
6.参与编写项目相关文档。
教育背景:
学历:本科其它:
经验要求:工作经验:3-5年
任职要求:
1.统计学、数学或计算机、数理统计或数据挖掘专业方向相关专业本科或以上学历;有扎实的数据统计和数据挖掘专业知识;
2.熟练使用数理统计、数据分析、数据挖掘工具软件(SAS、R、Python等的一种或多种),能熟练使用SQL读取数据;
3.使用过逻辑回归、神经网络、决策树、聚类等的一种或多种建模方法;
4.3年以上数据分析工作经验,征信从业背景人员优先;
5.具有金融行业项目经验的相关经验者优先考虑;
6.主动性强,有较强的责任心,积极向上的工作态度,有团队协作精神。
能力素养:
良好的分析、归纳和总结能力,善于分析、解决实际问题;主动性强,有较强的责任心,积极向上的工作态度,有团队协作精神。
2大数据开发工程师
北京大数据开发平均工资:?0?630230/月。
大数据开发工程师/专家岗位指责(引自滴滴出行):
职位描述:
1、构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;
2、服务各种业务需求,服务日益增长的业务和数据量;
3、深入源码内核改进优化开源项目,解决各种hadoop、spark、hbase疑难问题,参与到开源社搏咐区建设和代码贡献;
岗位要求:
1、计算机或相关专业本科以上学历(3年以上工作经验);
2、精通C/Java/Scala程序基好纯开发(至少一种),熟悉Linux/Unix开发环境;
3、熟悉常用开源分布式系统,精通Hadoop/Hive/Spark/Storm/Flink/HBase之一源代码;
4、有大规模分布式系统开发、维护经验,有故障处理能力,源码级开发能力;
5、具有良好的沟通协作能力,具有较强的分享精神;
6、对Ku、Kylin、Impala、,github等系统有深入使用和底层研究者加分;
㈣ 大数据技术的就业前景和就业方向
大数据技术是当前非常热门的技术领域之一,其就业前景非常广阔。大数据技术可以应用于众多行业和领域,例如金融、医疗、电子商务、物流、教育等。以下是大数据技术的就业方向:
1、数据分析师:负责通过数据分析提供业务洞察和建议,帮助企业做出决策。
2、数据工程师:负责搭建数据处理系统,包括数据采集、存储、处理、展示等环节。
3、数据科学家:负责通过机器学习、数据挖掘等算法技术,从大量数据中挖掘有价值的信息。
4、大数据工程师:大数据工程师负责设计、构建和维护大数据系统,包括数据仓库、ETL(抽取、转换和加载)过程以及数据流和数据处理管道。大数据工程师需要精通Hadoop、Spark、Hive、Pig等大数据技术和工具。
5、数据科学家:数据科学家通过分析大数据来发现业务问题和趋势。他们需要深入了桐铅解统计学、机器学习和数据挖掘,并使用工具如Python、R、SAS和MATLAB等来处理和分析数据。
6、数据分析师:数据分析师负责收集、处理和分析数据,并将结果用于业务决策。他们需要了解SQL、Excel、Tableau和Power BI等工具。
总之,大数据技术的就业前景非常广阔,未来还有很多机会。对于那些掌握相关技能的人来说,将来可以期望找到高薪的工作,并且可以在各个行业中发挥作用。
㈤ 大数据技术与应用就业方向
大数据主要的三大就业方向:
大数据系统研发类人才;
大数据应用开发类人才;
大数据分析类人才。
大数据十大就业职位:
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapRece.HDFS提供了海量数据的存储,MapRece提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化(前端展现)工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数 据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作 将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗 和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证 市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。