1. 大数据服务是信息安全服务吗
不是。大数据主要是数据的磨冲脊判贺整理和统瞎渗计。网络信息安全指的是Web安全,也就是网页安全,这方面考察的更多的是工具的熟练使用。
2. 大数据成为提升公共服务质量和效率的重要手段是从什么视角看大数据的价值体现
大数据成为提升公共服务质量和效率的重要手段是从政府、民众、企业视角看大数据的价值体现。
在各类公共服务之中,政府公共服务部门亟须搭建快速、精准、高效的数字化办公流程和政务服务模式,为政府、民众和企业提供快捷、精准、高效、方便的公共服务,实现政府从粗放式管理向精细化管理转变、从单兵式管理向协作式管理转变、从线下实体化管理向线上网络化管理转变。
大数据的价值体现在以下几个方面:
(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销。
(2)做小而美模式的中小微企业可以利用大数据做服务转型。
(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
3. 大数据服务器跟普通服务器有什么区别
大数据用对cpu占用比较大, 内存也比较大,要求快速,普通的也就是能支持一定的并发访问量就可以了,
4. 大数据时代,客户服务将如何被改变
大数据时代,客户服务将如何被改变_数据分析师考试
最近,“大数据”已经取代了“云技术”,成为了新技术的热门话题,各类“大数据”的书籍层出不穷,文章更是琳琅满目,仿佛你要是不和“大数据”扯上点关系,你就OUT了!笔者对这些文章也略有涉猎,但觉徒挂“大数据”虚名者多,而真知者寡。为了让大家更容易理解大数据的内涵?请允许我先简单地介绍一下大数据的定义和背景。
麦肯锡的报告是这样定义的:大数据是指无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。(Big data refers to datasets whose size is beyond the ability oftypical database software tools to capture, store, manage, and analyze.)
大数据这个概念又是怎么来的呢?2011 年5 月,EMC 举办了一次主题“云计算相遇大数据”的大会,首次抛出了“大数据”(Big Data)概念;6 月,由EMC 赞助,IDC 编制的年度数字宇宙研究报告《从混沌中提取价值》 (Extracting Value from Chaos) 发布;紧接着,IBM、麦肯锡等众多国外机构发布“大数据”相关研究报告,予以积极跟进。
从背景我们可以看到EMC(全球最大的外置存储硬盘供应商)是推动“大数据”这个概念的主谋,他这么做,当然是想多卖点硬盘。这种软广告式炒作不但没引起反感和吐槽,反而被社会各界认可与接收,也是跟其社会背景密不可分。由于近年数据产生成本急速下降,人类产生的数据量正在呈指数级增长,其中80%以上都是传统数据库无法处理的非结构化数据。这些数据到底有多大呢?根据IDC 的监测,全球在2010 年正式进入ZB 时代,预计到2020 年,全球将总共拥有35ZB 的数据量,如果把35ZB 的数据全部刻录到容量为9GB 的光盘上,其叠加的高度相当于在地球与月球之间往返三次……在这么直观的比喻面前,其他语言也要苍白无力了!
也许你会说大数据这种现象不用说,我们早就看出来了,不就是数据大么,能给我们的社会带来什么实质性的影响啊,或者我怎么没看到它的应用?关于大数据的应用,我在这里就不赘述了,市面上各种“大数据”的书已经谈了很多案例了。我只想说“剖析历史可以洞察未来”,几年前说“云技术”还很遥远的那些人,却在将自己的文档、照片、视频上传至“iCloud”,使用着“搜狗云输入法”,登陆Dropbox、Yelp、Zynga等网站(这些网站正托管于亚马逊的"云平台")......那片飘在天上的“云”早已不是“触不可及”。
根据麦肯锡全球研究所的研究报告《Big data: The next frontier for innovation, competition, andproctivity》,大数据将给医疗服务、公共管理、定位服务、零售和制造各个行业带来显著的应用价值,例如,对美国的医疗服务业每年创造价值3000亿美元,约0.7%的年增长率,对美国制造业最高可下降50%的产品研发和装配成本。麦肯锡的这份报告详致地阐明了大数据对各行各业的利好,推荐大家阅读,我这里只谈大数据对客户服务领域的影响。
在云时代,淘宝推出的一种极具“云”特色的客户服务模式——云客服,云客服把社会上喜欢帮助人且有能力帮助人的淘宝人聚集在一起,使客服人员在家里或学校对客户提供远程服务,实现了“HO(Home Office,驻家办公)”,并充分利用了客服人员的零散时间,不仅降低了成本,还提高了效率。当然,这个“云”并不是真正意义上的云技术,只是一种概念和噱头。而在大数据时代,又将会给客户服务带来哪些商业价值呢?
我认为,大数据将对客户服务带来一次变革,给客户服务带来极大的想象空间和无限的发展前景。甚至可以使客服部门从原来的成本中心(高成本、低价值)转型为利润中心(提升品牌价值,创造收入)。在这里我举三个例子跟大家探讨一下,展望一下客户服务的未来。
一、智能语音客服
目前,通信运营商等在客服领域比较先进的企业已经实现了智能文字客服,通过文字识别技术和智能匹配算法对通过短信和网站文字客服提出的服务诉求智能匹配答案,不需人工判断。要实现智能语音客服,也要通过识别和匹配这两关。
我们先说说识别吧。早在Siri之前,就已经有很多语音识别工具问世,最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字,现在AT&T的语音系统 Watson已经可以实现在线德语和英语的实时口译。以现在的技术,语音的识别依然比较困难,主要面临的难点有2个:
1.算法
算法是软件的核心,目前的语音识别算法使用的语言模型仍是一种概率模型,还未发展成以语言学为基础的文法模型,算法不突破,效果无法取得突飞猛进的进展。算法的优化不是一朝一夕的事情,需要慢慢不断地进行,尤其语音这种非结构化数据(不便用数据库二维逻辑表来表现的数据),但随着大数据分析技术(用于非结构化数据的管理分析)的发展,也会对新算法开发带来福音。一些核心算法如特征提取、搜索算法和自适应算法也都在一步步改进,且随着数据源的不断丰富,算法的识别效果也就越来越精准。
2.适应性
由于方言、语气、环境和音色等因素的影响,限制了语音识别算法的效果,这就需要语言识别系统具有一定的自适应性,不同口音、方言的识别都需要以一个庞大的语音数据库为基础,对这些非结构化数据的管理分析就更加指望大数据技术了。至于排除环境噪音、音色等因素,个人感觉要依赖半导体传感技术的进步,留待硬件领域的专家进一步探讨。
接下来就说到匹配了。目前,匹配的算法已经相对比较成熟了,也许和大数据技术没有直接联系,不过其准确性也有赖于数据源的丰富程度,同时要在不断产生的“交互数据”中动态地调整匹配结果。
综上所诉,随着数据源越来越多,大数据技术的不断进步,语音识别系统也在持续地完善之中,说到底,算法依然是核心,而数据则是基础,对于这类非结构化数据,也许传统的数据库技术Handle不住,但大数据技术却大有可为。相信不久,语音识别的技术的突破不仅可以实现智能语音客服,还将变革人与物之间的交互方式。
二、语音文本转换
因为这个功能的核心也是语音识别,所以大数据技术对的转换准确度的保障支撑就不用再说了。之所以单列出来谈呢,是因为其对客户服务别有一番作用。
对于呼叫中心而言,客服人员与用户的通话都是要录音备份的,这些语音数据可真的不小哦,仅以广东移动为例,广东移动客服中心每年就要新增约60T的数据存储,这个体量对于一般的企业来说已经是“大数据”了。据悉,这些数据是用磁带来保存的,而且这些要保存几十年不能销毁,想想到时候光这些磁带所占用的房间租金就是不少钱啊,更何况是其他成本。而如果能将这些语音准确地转换成文本之后,文本存储所占用的空间就小的多(一个移动硬盘都可以存储一个图书馆的数据量了),存储成本简直就是直线下降,不仅实现了低成本高效,对自然环境也是一种利好。
有人会质疑这些录音是为了便于追溯留证的,不是原始的录音记录,客户不认账怎么办?当然,我要声明不是所有的录音都要转换成文本,对于客户投诉或办理业务的来电,仍然保留录音记录,一则便于企业对客服人员的服务态度(说话语气什么的还真要靠语言才能判断)和质量进行抽检,二则备份留证。而对于更多的咨询或查询类来电,通常不必留证,将这些语音转成文本之后,不仅减少了存储空间,这些文本数据还可用于后续的信息挖掘,用来改进服务或发现商机,毕竟文本的信息分析要比语音的容易得多。
三、客户信息挖掘
在互联网时代,除了用户数、营业额等,数据已经被认为是未来的核心资源。我记得马云曾说过类似这样的话“你知道全国哪个省份的女人胸围最大么?你知道哪个城市的男人最喜欢用什么牌子的衣服、香水么?你们都不知道,淘宝知道。”每年有多少企业关注《淘宝用户行为报告》,以图挖掘出一些数据来提升自己的销量,从这里,数据的价值可见一斑。
而客服部门作为企业前端的客户直接接触窗口,每天都可以从客户身上获取大量的信息,甚至可以在客户比较满意的时候,主动获取一些爱好、职业等信息,积少成多,某些时候,这些数据将为企业巨大的价值。当然,这些数据的录入也不能仅靠人工,其中更涉及客户视图和标签的问题,待下文再进行剖析思考。对客户信息挖掘的应用,我在此举两个简单的例子。比如,通过数据的挖掘,可以发现哪些用户是高尔夫球爱好者,进行精准营销,避免盲目营销导致的客户反感及投诉。再如,随着定位技术成为了手机的标配,个人位置信息已经成了客户服务领域待被开采的金矿,国外运营商已经开始分析这些个人位置信息的数据,并将洞察结果面向政企客户提供,这些位置信息可以为企业的实体店、营业厅选址提供依据。
以上是小编为大家分享的关于大数据时代,客户服务将如何被改变的相关内容,更多信息可以关注环球青藤分享更多干货
5. 大数据未来的发展前景怎么样
目前,我国大数据企业分布在产业链各个环节,包括大数据基础的硬件、软件支撑与大数据服务。行业龙头企业均专注其重点布局领域,在各个方向拥有明显的特有优势。在区域分布方面,中国大数据企业较为集中,主要分布在京津冀与东部沿海地区。
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据、竞争层次、产业结构、应用领域分布、区域集中度、业务竞争力、五力模型分析等
1、中国大数据行业产业链各环节竞争情况
目前,我国的大数据产业尚处于初级建设阶段,从其细分领域来看,大数据产业可划分为大数据基础支撑设施、应用软件以及大数据服务三大子行业。中国大数据代表性企业分布在各个子行业,基础支撑层主要代表厂商有同有科技与欧比特等;专门研发大数据相关软件的代表性企业有常山北明、思特奇与四维图新等;科创信息与神州泰岳等企业则专注于大数据服务。另外,行业的龙头企业如美亚柏科与易华录等,业务布局覆盖整条大数据产业链。
更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。