导航:首页 > 网络数据 > 大数据概念可以参考的文献

大数据概念可以参考的文献

发布时间:2023-07-22 04:24:08

大数据和人工智能论文

随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望对你有帮助!

大数据和人工智能论文篇一

基于大数据和人工智能的被保险人行为干预

【摘要】随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,则可以实现对被保险人行为的干预,降低给付发生的概率和额度,提高人民健康水平。基于此,文章介绍了利用大数据和人工智能技术对被保险人行为干预的优点及干预方式,并预期可能实现的干预结果,最后对保险公司进行被保险人行为干预提出了阶段建议。

【关键词】大数据 人工智能 行为干预

近年来随着大数据和人工智能技术的发展,越来越多的领域应用这些技术来提高自身的专业水平。保险作为基于大数法则进行风险管理的一种方式,对数据的处理和应用要求更高。目前大数据技术在保险业的应用主要是精准营销、保险产品开发和理赔服务等,但在保险中的防灾防损方面的应用还不够。如果能够深入挖掘大数据在被保险人行为方面的研究,再结合人工智能进行智能干预,则可以对被保险人实现有效的风险管理,提高被保险人的身体健康状况,从而极大程度的提升客户效用,提高社会整体福利水平。

一、被保险人行为干预简介

行为干预是通过对环境进行控制从而使个体产生特定行为的方式,目前主要在教育,医疗等方面发挥作用。但在被保险人管理方面,行为干预应用很少。现行的对被保险人的管理主要集中在投保审核的过程中,而在投保后提供的服务和干预很少,一般也就是提供健康体检等服务,而对被保险人投保后的日常生活行为方式,健康隐患则基本处于放任自流的状况。而被保险人行为干预则是通过对被保险人日常生活行为,饮食习惯等进行实时数据收集和分析,然后制定干预方式进行针对化管理的模式。

二、利用大数据和人工智能进行被保险人行为干预的优点

实现精准、良好的对被保险人的行为干预,需要利用大数据和人工智能技术。大数据相比传统数据具有海量、高速、多样等特点,它实现了对信息的全量分析而不是以前的抽样分析。在被保险人行为干预模式中,需要对每一个个体的日常生活作息,行为,饮食,身体健康指标的进行实时数据采集,然后进行分析,这用传统的数据统计方法是难以做到的。利用大数据技术进行分析能从海量信息中获取被保险人的风险状况,从而为精准干预提供基础。简单的干预难以实现特定的干预结果,而人工智能则让干预显得更加自然,让被保险人更加易于接受,从而很大程度上提高了干预效果。

三、如何利用大数据和人工智能进行被保险人行为干预

利用大数据和人工智能进行被保险人的行为干预主要有以下步骤:

首先利用人工智能设备进行被保险人数据收集,除了目前的手机APP,网络等软件和设备上的数据能够被收集外,未来人工智能家居能提供更多的被保险人信息。例如提供体重、坐姿等数据的椅子,提供饮食时间和品种的筷子,提供身体运动和健康数据的智能穿戴式设备等等。数据收集后,需要利用大数据技术对海量数据进行清洗,去噪等技术处理,然后对数据进行分析。第三步是根据数据分析结果,制定具体的行为干预方案。最后一步是根据制定的方法,利用人工智能进行干预,如智能椅子调整坐姿,智能厨具减少含油量,针对性的健康食谱推荐,锻炼提醒,智能家居辅助锻炼等等。与此同时,新一轮的数据收集又开始了,整个过程是连续进行,不断循环的。

四、利用大数据和人工智能进行被保险人行为干预的预期成果

对被保险人来说,这种干预方式能有效的进行健康管理。未来的健康保险将成为个人真正的健康管家,从日常生活行为,到身体机能都能提供很好的干预,并且让良好生活方式的养成更加容易,从而提高自身的健康状况,达到更好的生活状况。但另一方面,全面数据化,智能化的方式可能会带来很大的数据泄露风险,所以如果保护客户私密数据是另一个值得研究的问题。另外,对于投保前健康状况较差的客户,或者是对行为干预较为抵制,干预效果较差的客户,可能需要承担更多的保费。当然对于优质客户和乐于提升和改变的客户则可以享受到更加优惠的费率。也就是说在大数据和人工智能技术下,客户进行了进步一步细分。

对保险人来说,行为干预能够降低被保险人的风险,很多疾病能实现防范于未然,降低赔偿程度。另外,借助大数据和人工智能,保险人还能根据分析结果,被保险人对干预的反应等进行客户的进一步分类,从而实现区块化管理。但这对保险公司也提出了更高的技术要求,尤其在前期,可能会带来加大的成本。

五、保险公司推进被保险人行为干预的建议

对于保险公司来说,目前的一些人工智能技术还未能实现,或者成本高昂,难以普及。所以现阶段对保险公司来说首先是提高大数据能力。

具体来说,首先是利用大数据对公司已有客户信息进行数据挖掘,包括承保数据,理赔数据等,从而一定程度挖掘出客户的特征,并提供服务。如根据挖掘出的性别差异,地区差异,年龄差异等,提供不同的生活建议。

如果公司已经充分进行了自身客户已有数据的挖掘,则可以利用目前的手机APP,佩戴设备进行数据的进一步收集。例如,利用薄荷、饮食助手、微信运动、春雨掌上医生、血糖记录、小米手环等数据进行用户数据收集。同时可以针对被保险人开发专门的手机APP,集数据收集和服务于一身。

更进一步,保险公司可以尝试与其他高科技企业合作,开发一些智能穿戴式设备,智能家居等,逐步实现对被保险人的行为干预。

参考文献

[1]彼得・迪亚曼迪斯.将会被人工智能和大数据重塑的三个行业[J].中国青年,2015,23:41.

[2]王和,鞠松霖.基于大数据的保险商业模式[J].中国金融,2014,15:28-30.

[4]尹会岩.保险行业应用大数据的路径分析[J].上海保险,2014,12:10-16.

下一页分享更优秀的<<<大数据和人工智能论文

Ⅱ 大数据下的计算机信息处理技术研究论文

大数据下的计算机信息处理技术研究论文

摘要: 现如今,随着科学技术的快速发展,计算机技术已经融入到人们的生活之中,想想10年前的计算机技术和现如今的计算机技术,真的是天壤之别,发生了翻天覆地的变化。同时,大数据的应用也越来越广泛,带来了丰厚的利润,各种“云”层出不断,对大数据的背景下,计算机信息处理的技术提出更高的竞争和要求。本文首先介绍大数据的概念,阐述基于大数据背景下的各种计算机信息处理技术,并对技术进行分析研究,最后对大数据未来的发展的机会做出分析。

关键词: 大数据;计算机信息;技术研究

随着科技的迅猛发展,大数据的应用愈来愈广,随之产生的数据系统总量大,十分庞大,这就对大数据时代下的计算机信息处理技术提出了更高的要求,如何将大数据处理的井然有序,有条不紊,值得每一位考研人员进行探讨。

一、大数据的概念

什么是大数据?大数据,另一种叫法称之为巨型资料,是一个十分复杂密集的数据集,这样的数据集在一定的时间内,依靠于传统普通的数据加工软件无法最终实现管理、抓取及处理的功能,需要进行创新,用新的处理模式才能够实现。大数据具有虚拟化、按需服务、低成本等等特点。在每一个消费者的角度来看,大数据中的计算技术资源服务可以帮助每一个大数据用户完成想要的资源信息,用户只需进行付费就可以直接使用,根本不需要到处搜寻资料,跑来派去的打听。这从根本上改变了人们对信息资源的需求方式,为用户提供一种超大规模的网络资源共享。同时,面对海量的大数据库资源,如何对大数据资源进行处理,得到用户们想要的信息资源,需要计算机信息技术不断的进行挖掘。

二、大数据下的计算机信息处理技术

总体的来说,基于大数据背景下的计算机信息处理技术总共可以分成以下3个方面:信息的获取及加工技术、信息的存储技术和信息安全方面的技术。下面就针对这三种技术,进行研究分析。1)信息的获取及加工技术。信息的获取及加工技术是实现信息化的第一步,是最基础的工作内容,只有完成了信息数据的搜集工作,才能进行下面的计算机信息技术的处理。因此,如若进行信息的采集工作,需要首先明确信息的目标源,对信息数据进行监控,时刻把握信息的流向及动态,然后将采集的信息数据输入至计算机数据库中,实现了信息的获取采集工作。接下来是第二步,信息的加工及处理工作,所有的加工和处理技术的核心在于用户的指引,完全由用户导向,设定信息的筛选范围,确定信息的丰富度等等。最后是依照于用户的要求,将信息资源传输到用户手中。这样就实现了整个信息从采集到处理,再从处理到传送工作的整个流程。2)信息的存储技术。在大数据的背景下,对于整个计算机信息的处理,信息技术的存储是十分关键的环节,可以将处理加工的数据得以保存,更方便用户对于数据的调取和应用。而且,现如今的信息数据总量大、更新速度快,合理的运用存储方面的技术,可以快速的实现信息的存储工作,提高工效效率,将复杂变简单。在目前的时代下,应用最广泛的是分布式数据存储技术,应用十分方便,能够实现快速大量的数据存储。3)信息安全方面的技术。大数据在方便用户使用和享受的同时,信息数据资源的安全性也是不容忽略的,而且随着社会的发展,数据资源的安全性和隐私性逐渐受到关注,如何实现数据库的安全是个十分值得研究的课题。首先最主要的是建立计算机安全体系,充分引进更多的人才。其次需要加强安全技术的研发速度,由于大数据发展及更新速度快,需要快速的更新原有的安全体系,尽快的适应大数据时代的更新速度。除此之外,加强对信息的监测是十分必要的,避免不法之人进行数据的盗取,在信息数据庞大的体量下,依然能够提供稳定有效的安全体系。

三、大数据下的计算机信息技术的发展前景

1)云技术的发展是必然趋势。云计算网络技术是越来越得到大的发展,一方面由于计算机硬件系统的数据处理技术有限,云技术可以完全的将弊端破除,同时,它能够利用最新的数据资源和处理技术,不依赖于计算机硬件系统。因此,随着庞大的数据越来越复杂,传统的数据处理方式已经不能够适应,未来将计算机信息处理必将朝着云计算发展。2)计算机网络不再受限于计算机硬件。未来,计算机网络技术将会不再受制于计算机硬件的限制,网络的传输技术更加趋向于开放化,计算机网络和计算机硬件将会分隔开,重新定义新的网络架构。3)计算机技术和网络相互融合。传统的计算机技术需要运用计算机的硬件系统才能够实现信息的处理、加工及存储工作,未来新的.计算技术将脱离于计算机硬件配备,可以仅仅用计算机网络就可以实现数据的加工和处理。同时,二者也将会相互融合、相互发展真正的满足由于大数据时代的更新所带来的困扰,这是未来大数据背景下计算机技术发展的又一个方向。

四、大数据下的计算机信息技术面临的机遇和挑战

在大数据背景下,计算机信息技术的机遇和挑战并存,首先,病毒及网站的恶意攻击是少不了的,这些问题是站在计算机信息技术面前的巨大挑战,同时,近些年,网络诈骗不断,社会关注度逐渐提高,网络的安全问题也是不同忽视,再者,信息之间的传送速度也有限,需要对传送技术进行创新,以适应更高的用户需求。最后,随着大数据库的不断丰富,越来越庞大的数据资源进行加工和处理,对数据的存储又有了新的要求,如何适应不断庞大的数据信息量,实现更加便捷的、满足用户需求的调取也是一个巨大的挑战。与此同时,也存在着许多的机遇。首先,大数据对信息安全的要求越来越大,一定程度上带动了信息安全的发展,其次,大数据在应用方面,对企业及用户带来了巨大的便利,同时也丰富了产业资源,未来用户及企业面前的竞争可能会转化为大数据信息资源的竞争。最后,大数据时代的来临,构造了以信息安全、云计算和物联网为主要核心的新形势。

五、结论

通过一番研究,目前在大数据时代下,计算机信息技术确实存在着一定的弊端,需要不断的进行创新和发展,相信未来的云计算会越来越先进,越来越融入到人们的生活及工作当中,计算机信息技术面临的巨大的挑战和机遇,面对挑战,抓住机遇,相信未来我国的计算机技术会越来越好,必将超过世界领先水平!

参考文献:

[1]王秀苏.计算机信息处理技术在办公自动化上的应用[J].科技经济市场,2010(03).

[2]张连杰.企业管理中计算机技术的应用[J].电脑知识与技术,2011(26).

[3]陈静.浅谈计算机处理技术[J].科技与企业,2012(11).

[4]赵春雷,乔治纳汉."大数据"时代的计算机信息处理技术[J].世界科学,2012.

[5]庄晏冬.智能信息处理技术应用与发展[J].黑龙江科技信息,2011.

[6]艾伯特拉斯洛,巴拉巴西,著.马慧,译.爆发:大数据时代预见未来的新思维[M].北京:中国人民大学出版社,2012.河南省高等学校重点科研项目计划(16A520008)


;

Ⅲ 数据采集|教育大数据的来源、分类及结构模型

一、 教育大数据的来源

教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。

教育大数据产生于 各种教育实践活动 ,既包括校园环境下的教学活动、管理活动、科研活动以及校园生活,也包括家庭、社区、博物馆、图书馆等非正式环境下的学习活动;既包括线上的教育教学活动,也包括线下的教育教学活动。

教育大数据的核心数据源头是“人”和“丛扰物”——“人”包括学生、教师、管理者和家长,“物”包括信息系统校园网站、服务器、多媒体设备等各种教育装备。

依据来源和范围的不同,可以将教育大数据分为个体教育大数据、课程教育大数据、班级教育大数据、学校教育大数据、区域教育大数据、国家教育大数据等六种 。

二、 教育大数据的分类

教育数据有多重分类方式。

从数据产生的业务来源来看,包括 教学类数据、管理类数据、科研类数据 以及服务类数据。

从数据产生的技术场景来看册郑念,包括 感知数据 、业务数据和互联网数据等类型。

从数据结构化程度来看,包括 结构化数据、半结构化数据和非结构化数据 。结构化数据适合用二维表存储。

从数据产生的环节来看,包括 过程性数据和结果性数据州困 。过程性数据是活动过程中采集到的、难以量化的数据(如课堂互动、在线作业、网络搜索等);结果性数据则常表现为某种可量化的结果(如成绩、等级、数量等)。

国家采集的数据主要以管理类、结构化和结果性的数据为主,重点关注宏观层面教育发展整体状况。到大数据时代,教育数据的全面采集和深度挖掘分析变得越来越重要。教育数据采集的重心将向非结构化、过程性的数据转变。

三、教育数据的结构模型

整体来说,教育大数据可以分为四层,由内到外分别是基础层、状态层、资源层和行为层。

基础层:也就是我们国家最最基础的数据,是高度保密的数据; 包括教育部2012年发布的七个教育管理信息系列标准中提到的所有数据,如学校管理信息、行政管理信息和教育统计信息等;

状态层,各种装备、环境与业务的运行状态的数据; 必然设备的耗能、故障、运行时间、校园空气质量、教室光照和教学进度等;

资源层,最上层是关于教育领域的用户行为数据。 比如PPT课件、微课、教学视频、图片、游戏、教学软件、帖子、问题和试题试卷等;

行为层:存储扩大教育相关用户(教师、学生、教研员和教育管理者等)的行为数据, 比如学生的学习行为数据、教师的教学行为数据、教研员的教学指导行为数据以及管理员的系统维护行为数据等。

不同层次的数据应该有不同的采集方式和教育数据应用的场景。

关于教育大数据的冰山模型,目前我们更多的是采集一些显性化的、结构性的数据,而存在冰山之下的是更多的非结构化的,而且真正为教育产生最大价值的数据是在冰山之下的。

参考文献:

教育大数据的来源与采集技术  邢蓓蓓

Ⅳ hadoop参考文献有哪些

《大数据技术原理与应用—概念、存储、处理、分析与应用》。hadoop参考文献有《大数据技术原理与应用—概念、存储、处理、分析与应用》,Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据。

Ⅳ 如果我们的研究主题为大数据,应检索哪些文献

1.[期刊论文]数据科学与大数据技术专业的教材建设探索

期刊:《新闻文化建设》 | 2021 年第 002 期

摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。

关键词:数据科学与大数据技术专业;课程设置;教材建设

链接:https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/0201289060336.html

---------------------------------------------------------------------------------------------------

2.[期刊论文]数据科学与大数据技术专业课程体系探索

期刊:《科教文汇》 | 2021 年第 002 期

摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.

关键词:数据科学;大数据技术;课程体系

链接:https://www.zhangqiaokeyan.com/academic-journal-cn_science-ecation-article-collects_thesis/0201284684572.html

---------------------------------------------------------------------------------------------------

3.[期刊论文]数据科学与大数据技术专业实验实践教学探析

期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期

摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.

关键词:数据科学;大数据;实践教学

链接:https://www.zhangqiaokeyan.com/academic-journal-cn_journal-changchun-university_thesis/0201288750604.html

Ⅵ 浅谈计算机与大数据的相关论文

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!

计算机与大数据的相关论文篇一
浅谈“大数据”时代的计算机信息处理技术

[摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。

[关键词]大数据时代;计算机;信息处理技术

在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。

一、大数据时代信息及其传播特点

自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。

大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。

二、大数据时代的计算机信息处理技术

(一)数据收集和传播技术

现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。

(二)信息存储技术

在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。

(三)信息安全技术

大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。

(四)信息加工、传输技术

在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。

结语:

在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。

参考文献

[1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107.

[2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50.

[3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI

[4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110
计算机与大数据的相关论文篇二
试谈计算机软件技术在大数据时代的应用

摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。

关键词:计算机 大数据时代 容量 准确 价值 影响 方案

1 概述

自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。

大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。

2 大数据时代的数据整合应用

自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。

企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。

2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。

3 企业信息解决方案在大数据时代的应用

企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA:

3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。

3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。

3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。

3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。

3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。

在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。

如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。

在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。

4 结束语

在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。

参考文献:

[1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009.

[2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007.

[3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994.

[4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999.

[5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000.

[6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊.

[7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02).

[8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01).
计算机与大数据的相关论文篇三
浅谈利用大数据推进计算机审计的策略

[摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。

[关键词]大数据 计算机审计 影响

前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。

一、初探大数据于CAT影响

1.1影响之机遇

大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。

1.2影响之挑战

大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。

二、探析依托于大数据良好推进CAT措施

2.1数据质量的有效保障

依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。

2.2公共数据平台的建立

依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。

2.3审计人员的强化培训

依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。

三、结论

综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。

猜你喜欢:

1. 人工智能与大数据论文

2. 大数据和人工智能论文

3. 计算机大数据论文参考

4. 计算机有关大数据的应用论文

5. 有关大数据应用的论文

Ⅶ 求一篇与大数据或者大数据信息安全专业相关的原版英文文献及其翻译,3000字左右。好人,拜托!

Big data refers to the huge volume of data that cannot
be stored and processed with in a time frame in
traditional file system.
The next question comes in mind is how big this data
needs to be in order to classify as a big data. There is a
lot of misconception in referring a term big data. We
usually refer a data to be big if its size is in gigabyte,
terabyte, Petabyte or Exabyte or anything larger than
this size. This does not define a big data completely.
Even a small amount of file can be referred to as a big
data depending upon the content is being used.
Let’s just take an example to make it clear. If we attach
a 100 MB file to an email, we cannot be able to do so.
As a email does not support an attachment of this size.
Therefore with respect to an email, this 100mb file
can be referred to as a big data. Similarly if we want to
process 1 TB of data in a given time frame, we cannot
do this with a traditional system since the resource
with it is not sufficient to accomplish this task.
As you are aware of various social sites such as
Facebook, twitter, Google+, LinkedIn or YouTube
contains data in huge amount. But as the users are
growing on these social sites, the storing and processing
the enormous data is becoming a challenging task.
Storing this data is important for various firms to
generate huge revenue which is not possible with a
traditional file system. Here is what Hadoop comes in
the existence.
Big Data simply means that huge amount
of structured, unstructured and semi-structured
data that has the ability to be processed for information. Now a days massive amount of data
proced because of growth in technology,
digitalization and by a variety of sources, including
business application transactions, videos, picture ,
electronic mails, social media, and so on. So to process
these data the big data concept is introced.
Structured data: a data that does have a proper format
associated to it known as structured data. For example
the data stored in database files or data stored in excel
sheets.
Semi-Structured Data: A data that does not have a
proper format associated to it known as structured data.
For example the data stored in mail files or in docx.
files.
Unstructured data: a data that does not have any format
associated to it known as structured data. For example
an image files, audio files and video files.
Big data is categorized into 3 v’s associated with it that
are as follows:[1]
Volume: It is the amount of data to be generated i.e.
in a huge quantity.
Velocity: It is the speed at which the data getting
generated.
Variety: It refers to the different kind data which is
generated.
A. Challenges Faced by Big Data
There are two main challenges faced by big data [2]
i. How to store and manage huge volume of data
efficiently.
ii. How do we process and extract valuable
information from huge volume data within a given
time frame.
These main challenges lead to the development of
hadoop framework.
Hadoop is an open source framework developed by
ck cutting in 2006 and managed by the apache
software foundation. Hadoop was named after yellow
toy elephant.
Hadoop was designed to store and process data
efficiently. Hadoop framework comprises of two main
components that are:
i. HDFS: It stands for Hadoop distributed file
system which takes care of storage of data within
hadoop cluster.
ii. MAPREDUCE: it takes care of a processing of a
data that is present in the HDFS.
Now let’s just have a look on Hadoop cluster:
Here in this there are two nodes that are Master Node
and slave node.
Master node is responsible for Name node and Job
Tracker demon. Here node is technical term used to
denote machine present in the cluster and demon is
the technical term used to show the background
processes running on a Linux machine.
The slave node on the other hand is responsible for
running the data node and the task tracker demons.
The name node and data node are responsible for
storing and managing the data and commonly referred
to as storage node. Whereas the job tracker and task
tracker is responsible for processing and computing a
data and commonly known as Compute node.
Normally the name node and job tracker runs on a
single machine whereas a data node and task tracker
runs on different machines.
B. Features Of Hadoop:[3]
i. Cost effective system: It does not require any
special hardware. It simply can be implemented
in a common machine technically known as
commodity hardware.
ii. Large cluster of nodes: A hadoop system can
support a large number of nodes which provides
a huge storage and processing system.
iii. Parallel processing: a hadoop cluster provide the
accessibility to access and manage data parallel
which saves a lot of time.
iv. Distributed data: it takes care of splinting and
distributing of data across all nodes within a cluster
.it also replicates the data over the entire cluster.
v. Automatic failover management: once and AFM
is configured on a cluster, the admin needs not to
worry about the failed machine. Hadoop replicates
the configuration Here one of each data iscopied or replicated to the node in the same rack
and the hadoop take care of the internetworking
between two racks.
vi. Data locality optimization: This is the most
powerful thing of hadoop which make it the most
efficient feature. Here if a person requests for a
huge data which relies in some other place, the
machine will sends the code of that data and then
other person compiles it and use it in particular
as it saves a log to bandwidth
vii. Heterogeneous cluster: node or machine can be
of different vendor and can be working on
different flavor of operating systems.
viii. Scalability: in hadoop adding a machine or
removing a machine does not effect on a cluster.
Even the adding or removing the component of
machine does not.
C. Hadoop Architecture
Hadoop comprises of two components
i. HDFS
ii. MAPREDUCE
Hadoop distributes big data in several chunks and store
data in several nodes within a cluster which
significantly reces the time.
Hadoop replicates each part of data into each machine
that are present within the cluster.
The no. of copies replicated depends on the replication
factor. By default the replication factor is 3. Therefore
in this case there are 3 copies to each data on 3 different
machines。

reference:Mahajan, P., Gaba, G., & Chauhan, N. S. (2016). Big Data Security. IITM Journal of Management and IT, 7(1), 89-94.
自己拿去翻译网站翻吧,不懂可以问

阅读全文

与大数据概念可以参考的文献相关的资料

热点内容
wiiu文件夹游戏怎么转格式 浏览:350
iphone5文稿与数据怎么删除 浏览:145
java匿名函数参数 浏览:215
excel怎么将csv文件内容分列 浏览:550
文件路径不转义字符 浏览:285
怎样使用手机锁屏密码 浏览:802
如何将pdf文件规格缩小 浏览:421
魔兽世界70治疗升级 浏览:103
linuxarm线程数量 浏览:880
数据库的重要性是什么 浏览:881
toolboxjs安装 浏览:85
安卓3g上网卡代码 浏览:306
vuejsjs数据绑定 浏览:323
企鹅号视频app叫什么 浏览:157
indd文件用ps打不开 浏览:759
磁盘清理后找不到文件 浏览:379
会计学科代码 浏览:507
文件夹选项没有了xp 浏览:167
win7更改文件格式 浏览:195
对件内文件排序通常按照什么顺序 浏览:12

友情链接