㈠ 电商平台如何利用大数据做好用户体验
在中国,通过大数据人物画像来实现流量个性化已非新鲜事,同时在大洋彼岸的美国,目前已经更进一步,通过最先进的数据分析平台,电商可以通过社交平台等数据对用户个性特征进行分析,从而实现更精准的营销,而且并非“财大气粗”的中小企业也可以享受到这样的福利。
不是所有的行为数据都有价值对于电商而言,其对大数据分析的主要需求可以体现在两方面,一是快速反应出问题所在,二是发现新的用户群体
对于备受关注的后者,电商希望通过智能联网分析已有的数据,发掘并预测出用户的兴趣所在,刺激用户购买积极性,并将产品推向特定人群。
目前业界的普通实现方式是,通过用户网络上留下的历史信息、记录,来猜测喜好,例如相关图书推荐、机票航班推荐等,但失算之处可能在于精准度和推荐时机不尽人意,比如用户已经旅行归来,系统还在推荐往返机票。
目前美国有一种研究方向,通过非结构化数据分析技术对用户进行个性化维度分析,包括对用户在网络上更新的个人状态信息进行分析,如Twitter、Facebook,推定用户个性及特征,以精准定义个人并实现标签化,同时反馈给商家并与目标市场用户相匹配,从而实现产品的关联。
对此,美国数据分析科学家、Taste Analytics创始人及全美五大可视化研究中心的Derek Wang(汪晓宇)博士表示,传统的方式需要基于大量的行为数据进行分析,并相信所有的动作具有价值,但事实却并非这样,容易造成对精准度和时机的把握不尽人意;而通过对人在网络上留下的真实语言、说话方式、评价内容等进行个性化维度分析,更贴近人真实的本性,这当然也包括购买喜好,只有这样才能实现更加准确的产品购买需求挖掘。
电商商户的“福利”
目前,该分析技术在电商平台上更能直接释放效力的方式,便是针对中小型商户的解决方案:对用户产品评价进行分析,来优化产品、提升用户体验。
Derek Wang举例道,通过Taste Analytics Signals数据分析平台,亚马逊平台上的耳机商户,可以对平台上用户的产品评价及Facebook上的留言进行语义分析,得出对耳机品牌、电池寿命、品种型号的用户反馈,以及不同产品间如Bose与Sony的产品分析。
这对于美国为数众多的亚马逊、新蛋、易贝商户而言无疑十分受用,其可以及时对产品和销售过程进行优化。
另一个典型应用是电商平台本身。美国某着名的大型家居销售企业,在其电商网络平台上,通过刺激网络流量来买卖产品。利用数据分析平台,其不仅发现并解决了用户消费时信用卡连刷2次的问题,同时观察到网络流量在一周中的不平均分布,后续通过市场促销,改变了市场营销过程。
(用Taste Analytics Signals平台对Amazon某热销汽水的分析结果)
决策在数据之上而非数据本身
用户的特征来自于文本分析,用户在网络上说的每一句话都将可能成为分析点。无疑更多的数据将有力于对用户行为进行匹配,提高分析准确性,而这方面社交平台则提供了一个很好的非结构化数据的来源。
事实上,美国电商本身已经在开始着手整合社交网络的数据信息,例如闪购网站Myhabit建议用户通过亚马逊账号登陆;电商Macys需要用Facebook账号登陆(这样的整合在国内也并不鲜见)。对于用户,这样的登陆方式更方便快捷;对于商户,可以将个人信息关联起来;而对于大数据技术/服务提供商,数据分析服务便可以由此展开,进行深度数据挖掘。
在Derek Wang看来,此项围绕人的非结构化数据分析平台服务,不仅能提升结果的准确性,更重要的是它建立的不是一个推荐系统,而是一个增强智慧的过程。毕竟仅基于既有行为的数据分析会导致可能的失败,小到上述提及的机票推荐,大到金融领域采用数学模型的危险性在次贷危机中已经暴露无疑。
“由机器提取的数据内涵,通过图像的方法展示给企业决策者,决策者通过与机器互动后做出决定。数据分析平台是辅助企业决策者的工具,也是它的价值所在。” Derek Wang说道。
不谋而合,《纽约时报》资深撰稿人史蒂夫·洛尔曾着书大数据时评论,虽然决策活动对数据与分析的倚重与日俱增是大势所趋,但同时还要让常识发挥应有的作用,经验与直觉仍然在决策中占有一席之地,而好的直觉又往往建立在大量数据分析基础之上。
机器与人分工合作才更好,更加值得一提的是,直观的图像可视化的呈现方式,使得电商及商户的内部分析师即使没有IT背景,也可以轻松地掌握产品动态,从而帮助其赢得市场。
大数据确有裨益,但并不是所有企业都能成功掘金大数据;只有那些富有远见、重视系统且敢于投资的公司才会有所斩获。对于零售业而言,有三个重要战略可帮助电子商务成功运用大数据。
正确理解大数据
不必纠结于大数据到底是什么,试图计算出多少数据才算大数据是不明智的。首先,没有确切的数字或数量级可用作数据量的分界线,因为大数据不在“量”,而在“全”。通过对全面数据的分析可以发现相应的趋势,进一步预测未来。想要掌握大数据,必须具备“大数据”的思维模式,即关注于那些已帮助完成了某项任务的数据。从庞大的历史数据中寻找规律,从而预测未来;或者找出有关因素,对搜索最佳数据的系统进行改善,获得正确数据取得最大利益。
如何获取大数据?
大数据被炒热和巨无霸企业在其中获得的巨大商业价值密不可分,但这并不意味着大数据是只有大公司才买得起的“独有玩偶”。小公司也能拥有自己的“大数据”。虽然大多数电商企业仍处于起步阶段,但它们也可以收集数据,挖掘优秀人才帮助做出更加明智的决定。数据分析可以从小数据开始、效果立竿见影,随后发展成为大数据。即使一家小咖啡厅也能通过探寻顾客的饮用习惯、信用卡记录以及在线定位设置而建立自己的“大数据”。
尽管中小型企业还未完全配备企业先进的大数据线上工具和模式,但他们仍能从本公司历史数据中找出规律。例如,有了一两个月推广促销活动的历史数据后,服装电商公司就可以开始分析各个品类的销售表现情况,掌握一周或一个月内的最畅销和最滞销的销售品类信息,同时清楚了解长期内的平均增长率和复合增长率。这样的数据分析方法能提供产品销售额和产品销售表现的衡量指标,从而找出产品销售模式和趋势,做出下一步商业决策。这样将帮助企业实现更大的销售额,同时,无论有无市场推广活动,都可以监控产品的销售表现。
整合零售策略与大数据
从企业的角度来看,大数据的最大价值在于零售策略与大数据技术相结合。目前,由于消费者对于他们所希望的购物时间与购物方式的要求越来越高,现代零售业已变得愈发复杂。因此,零售商需要更加聪明地来服务顾客,更加灵活地选用库存和配送订单的地点,更加明确如何使用搜集到的顾客数据进行线上线下的交叉销售和追加销售。为了达成这一目的,零售商需要借助一个定制软件来制定以顾客为导向、基于数据的策略,以便于为顾客提供个性化服务。
此外,企业必须将零售策略与数据分析最大程度地相匹配,保证销售计划的实现。大数据最大的特点之一就是在于能够高速更新和处理信息。根据这一特性,商业数据一旦生成,就可以进行相应策略的制定,帮助公司赢得时间与空间调整市场策略,以最充分地发挥自身优势。这就像防洪预警:上游一旦有所警示,下游就应立即作出回应调整。例如,涉足线上的传统零售商,在一组货品的15分钟促销时间内,往往会准备三套应变策略,以确保商品按计划销售。 通过整合零售策略和大数据,企业将能够吸引更多消费者、为他们提供定制化服务,从而提升产品销售表现、增加销售额,进而扩大收益。
㈡ 大数据交易模式的分类有哪些有哪些特点
大数据交易模式的分类有以下几种:
数据开放型:数据提供者将部分或全部数据集向公众开放,自由获取并使用。这种模式的特点是数据获取方便、成本低廉,但缺少精细化数据定制和保护机制。
数据订阅型:数据提供者向需要数据的客户提供数据,客户通过订阅服务获得数据。这种模式的特点是数据定制性好,但需要支付一定的数据费用。
数据交易平台型:搭建在线数据交易平台,数据提供者可以在平台上发布数据,而购买方可以选择合适的数据进行购轿带让买使用。这种模式的特点是数据资源丰富,交易效率高,但需要考虑数据质量、价值和安全等问题。
数据众包型:利用社会化协同的方式,通过广泛的人群参与,快速获取大量数据。这种模式的特点是数据收集速度快,成本较低,但数据质量可能不稳定,需要进行数据清洗和筛选。
大数据交易模式的特点包括:数据资源丰富、数据速度快、数据量大、数据格式多样、数据质量参差不闭局齐、数据安全性要求高、数据应用场景广泛等。同时,大数据交易需要考虑数据价值定价、数据行猜隐私保护、法律合规性等问题。
㈢ 如何利用网络上的现成大数据来进行超短线炒股
我们利用网络大数据分析技术,从互联网上检索最热的关键词,然后从关键词中检出相对应的股票名称或代码,依据各类大数据分析加权系数算法,选出优选股。\n\n搜索指数:\n\n 搜索指数是以搜索引擎海量网民行为数据为基础的数据分享平台,是当前互联网乃至整个数据时代最重要的统计分析平台之一,自发布之日便成为众多企业营销决策的重要依据。搜索指数能够告诉用户:某个关键词在搜索引擎上的搜索规模有多大,一段时间内的涨跌态势以及相关的新闻舆论变化,关注这些词的网民是什么样的,分布在哪里,同时还搜了哪些相关的词。例如index..com \n\n新闻热度:\n\n 10大新闻网站的财经频道每天都在报道上市企业和市场情况,爬虫根据财经首页的页面进行板块和行业等数据进行分析热门股票近日的曝光率。\n\n评论喜好:\n\n 股民喜欢在股吧和贴吧进行评论,爬虫根据网民发贴的情绪化词汇进行判断,出现负面词汇如不文明用语时,进行必要的扣分等操作。\n\n自选股关注度:\n\n 软件对用户自选股进行统计,关注人数高的股票自然会被纳入热门股票之列。\n\n资金流向:\n\n 软件即时跟踪股票的资金流向,特别关注庄家的大资金流向,对其拉升等动作进行大数据判断。\n\n图形分析:\n\n 软件对图形分析做了较多的大数据资料,并加入了自我学习的能力,如判断历史上的黄金坑,判断双底,计算斜率等。\n\n综合动能:\n\n 除了以上指标,软件还结合传统的MACD\KDJ等数据,按不同的指标进行打分,最终得出动能分。然后即时对高分股票按历史数据进行判断,推荐出最合适的股票供用户参考,当动能衰减时则会被沽出。\n\n\n\n 将软件停留在在仓界面,会自动更新股股价及进行买卖指令的操作。\n\n\n\n
㈣ 大数据对电商未来发展有什么影响
一、大数据是什么 ?
数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。“大数据”近年来在互联网和信息行业的发展而引起人们关注。从2012年起,大数据(big
data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
二、什么是电子商务?
电子商务是指在互联网上以电子交易方式进行交易活动和相关服务的活动,是传统商业活动各环节的电子化、网络化。现在电子商务已经是我们生活中不可或缺的一部分了。
电子商务的构成要素:
四要素:商城、消费者、产品、物流。
⒈买卖:各大网络平台为消费者提供质优价廉的商品,吸引消费者购买的同时促使更多商家的入驻。
⒉合作:与物流公司建立合作关系,为消费者的购买行为提供最终保障,这是电商运营的硬性条件之一。
⒊服务:电商三要素之一的物流主要是为消费者提供购买服务,从而实现再一次的交易。
电子商务的未来和发展:
更广阔的环境:人们不受时间空间的限制,不受传统购物的诸多限制,可以随时随地在网上交易。
更广阔的市场:在网上这个世界将会变得很小,一个商家可以面对全球的消费者,而一个消费者可以在全球的任何一家商家购物。
更快速的流通和低廉的价格:电子商务减少了商品流通的中间环节,节省了大量的开支,从而也**降低了商品流通和交易的成本。
更符合时代的要求:如今人们越来越追求时尚、讲究个性,注重购物的环境,网上购物,更能体现个性化的购物过程。
三、大数据时代下的电子商务
只有行业网站、电商平台等拥有企业数据优势,而且集合整行业信息,并有分析整合数据的能力,才能真正为企业提供真实、有效的数据分析。
那么对于我们而言,要做有两块工作,常规数据分析,专题式的数据挖掘研究。常规数据分析除了在宏观把握数据的趋势和异动之外,还要在微观上,将异动的数据指标进行细分,从微观角度找出问题的所在解决问题。而专题的数据分析是我们主动的提出一些问题,进而去寻找数据并进行研究,并不是为了解决问题而解决。这看似不能最直接的解决问题,然而这些数据的解读,我们能够掌握
卖家想要什么(what);
为什么要(why);
从哪里可以得到(where);
什么时候我们做(when);
哪些卖家针对哪些运营策略(who);
我们应该给多少(how much);
以什么形式进行(how);
通过5W2H的方法,结合分析手段来解决这些问题。
现在的淘宝网店,走向规模化、技术化,协作化,高投入方向发展,在当下的营销成本居高不下的环境下,如果你还不凭借数据化运营,出局是早晚的事。
㈤ 什么是大数据交易
现在关于大数据都是在滥用概念。大数据本意指运算的数据量大。而很多商家或者传回媒为了夺人眼球,胡乱的编答造些怪异概念出来。而所谓的大数据交易,其实就是通过网络在线搜索关注度很高的交易标的,这种方法未必可行。关键的还是要自己认真分析。首先是根据政策的方向,把握行业机会,再在行业中去寻找具有高门槛的龙头行业(当然,现在的龙头区分比较细化)。
㈥ 大数据交易平台有哪些
主要分为两种:一种为互联网公开数据交易,如发源地数据交易平台,社交数据、商品信息、新闻信息等公开的数据。另外一种为企业内部数据、隐私数据,类似于贵阳大数据交易所,这种需要政府支持。