⑴ 大数据分析的具体内容有哪些
随着互联网的不断发展,大数据技术在各个领域都有不同程度的应用
1、采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
2、导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3、统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4、挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
⑵ 大数据分析所需的五个资源是什么
1.完成MATLAB Mastery Bundle
MATLAB或Matrix是一个多范型数字计算空间和编程语言。用外行人的话来说,它是一种工具,它使得编写代码,运行脚本以及执行数据分析和可视化等任务变得轻松易懂,从而解决复杂问题,而这些代码还不那么复杂。
2.Python Power Code BONU SBundle
市场上有许多重要的编程语言可供选择,数据分析师使用其日常任务和职责中的很多。但是,如果有人要先学习,那就是Python。Python语言被誉为用户友好型以及直观性。此外,它拥有众多的功能,这使它能够处理数据争夺。70小时的培训通过展示如何下载,提取,清理,汇总,分析和可视化数据,开始了编程教育。
3.大数据和分析主工具包
数据分析师和高级分析咨询人员使用大量的语言和工具来获取角色,这并不足为奇。这四个模块集合为数据库添加了四个重要的分析工具,即Minitab,SPSS,SAS和RStudio。
4.使用Tableau Desktop9 Bundle进行数据可视化
通过交互式仪表板分析和呈现数据以完全挖掘信息的主要工具之一是Tableau9.这个收集将使您了解Tableau。因此,可以开始创建自己的可视化数据。
5.完整介绍R编程包
R的核心是一种统计编程语言,它非常适合挖掘和分析数据。但是,它也具有高级图形和机器学习功能,也在数据可视化和集成复杂算法上提供了一些独一无二的优势。在五门课程和三本电子书中,收集指导通过要点使用R来充分发挥潜力。
关于大数据分析所需的五个资源是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据分析所需的五个资源是什么?的相关内容,更多信息可以关注环球青藤分享更多干货
⑶ 数据分析:大数据处理的基本流程(三)
01
什么是数据分析
随着数字化进程的高速发展,越来越多的企业面对愈加激烈的竞争,差异化的市场,多变的环境,常常会面临各种难题,也变得更依赖于数据。
分析的本质是让业务更加清晰,让决策更加高效。 数据分析 作为大数据价值产生的必要步骤、整个 大数据处理流程的核心 ,其在企业中的地位也越来越重要。
数据分析的目的 说白了就是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,对其加以汇总、理解并消化,以求最大化地开发数据的功能,从而找出所研究对象的内在规律,发挥数据的作用。
简而言之, 数据分析就是一个有组织、有目的收集数据、为了使其成为信息而对数据加以详细研究和概括总结的过程。
在企业实际应用中,数据分析的一系列过程也是产品质量管理体系的支持过程。在企业产品的整个寿命周期,包括从市场调研到售后服务的各个过程都需要适当运用数据分析,以提升数据分析的有效性,能够适时解决企业难题、识别机会、规避风险。
数据分析的作用及价值,可简单归纳总结为下面四个方面:
1.追溯过去,了解真相(识别机会、规避风险)
2.洞察本质,寻本溯源(诊断问题、亡羊补牢)
3.掌握规律,预测未来(评估效果、改进策略)
4.采取措施,驱动行动(提高效率、加强管理)
02
数据分析的三个常用方法
数据分析本身是一个非常大的领域,这里将主要讨论一下在企业产品整个寿命周期期间,3个常用的数据分析方法 (想看数据分析常用算法的小伙伴可以点这里跳转) :
数据趋势分析
数据对比分析
数据细分分析
趋势 , 对比 , 细分 ,基本包含了数据分析最基础的部分。无论是数据核实,还是数据分析,都需要不断地找趋势,做对比,做细分,才能得到最终有效的结论。
数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如产品点击率、活跃用户数等。简单的数据趋势图并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念: 环比,同比,定基比 。
环比 指本期统计数据与上期比较,利用环比可以知道最近的变化趋势,但是有些数据可能会受季节、时间、地域等因素影响而产生差异。
为了消除差异,于是有了 同比 的概念,例如2019年2月份和2018年2月份进行比较。
定基比 就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释。
数据对比分析
很多时候单独看数据的趋势变化并不能说明问题,此时就需要给孤立的数据一个合理的参考系,否则孤立的数据毫无意义,这也是对比分析的意义所在。
一般而言,对比的数据是数据的基本面,比如行业情况,全站的情况等。
有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准,也就是A/B test,比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致,只有这样才能得到比较有说服力的数据。可以简单理解为样本数量为2的控制变量法。
数据细分分析
在得到一些初步结论后,就需要进一步对数据进行细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
进行数据细分分析时,一定要进行多维度的细拆,可以包括但不限于:
分时 :不同时间短数据是否有变化
分渠道 :不同来源的流量或者产品是否有变化
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异
分地区 :不同地区的数据是否有变化
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺
03
大数据时代数据分析面临的挑战
大数据时代,数据分析技术的发展也并非一直顺风顺水,眼下可能会面临一些新的挑战,主要有以下几点:
1
数据量大并不一定意味着数据价值的增加,也有可能是意味着数据噪音的增多。
因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。
2
大数据时代的算法需要进行调整。
大数据的应用常常具有实时性的特点,算法准确率不再是大数据应用的最主要指标。很多时候,算法需要在处理实时性和准确率之间博得一个平衡点。
其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。
最后,在选择处理大数据的算法时必须谨慎,当数据量增长到一定规模以后,可以从少量数据中挖掘出有效信息的算法并非一定适用大数据。
3
数据结果的衡量标准。
对大数据进行分析并非易事,同样的,对大数据分析结果好坏如何衡量也是大数据时代数据分析面临的更大挑战之一。
大数据时代的数据体量大、类型混杂、产生速度快,进行分析时如果没有对整个数据的分布特点了如指掌,无疑会导致在设计衡量的方法、指标时遇到困难。
企通查-企业大数据平台基于 数据采集、特征提取、信息关联、机器学习和深度学习算法模型、NLP文本分析 等先进技术,清晰构建企业全维度动态画像,通过 企业风控指数、企业信用指数、企业活力指数 三大指数模型体系和基于 企业基本能力、创新能力、经营能力、核心能力、财务能力和风险能力 六大方面的大数据风控体系,实现对企业和客户的 全流程主动感知、重点监控、变动提醒和风险预警 。此外,企通查还可以根据客户的不同需求定制所需的一系列企业数据。
⑷ 大数据都体现在哪些方面
大数据体现在方方面面,今两年疫情防控为例,大数据把海陆空交通、医院,政府,公安,安检信息全部整合到一起,比如一架飞机落地后,其中一名乘客被确诊为疑似病例。其他乘客就可以通过大数据来一个个全部找到,主要是通过他们订票信息,得知他们的联系方式,头像,行走路径,就可以找到与疑似病例的密切接触者有哪些,都去过哪儿,等等。另外,现在所有的交通事故,安全生产事故都可以通过大数据来统一调度,救援,等。
我们生活中也很多啊,我们平时点的外卖,点过一次,或者多次,就会出现在点单的最上面,这都是大数据分析出来的数据。
我们平时搜索过什么,广告推送都会崩出来,特别是淘宝和京东,直接广告就出现弹框,吸引你去购买,打开这些app,你会发现最近搜的东西推送的不光多,类似的一些也会推送。
公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益
电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。
⑸ 大数据工程师分析企业数据 所需大数据来源有哪些
【导语】如今大数据异常的火爆,每行每业都在讨论大数据,在这样的大趋势下,各大企业也都在思考大数据的问题,也都希望能在公司产品有研发、生产、销售及售后各个领域应用大数据,那么大数据工程师分析企业数据,所需大数据来源有哪些呢?接下来就一起来看看吧。
1、其实数据的来源可以是多个方面多个维度的。如企业自身的经营管理活动产生的数据、政府或机构公开的行业数据、数据管理咨询公司或数据交易平台购买数据、或者通过爬虫工具等在网络上抓取数据等等。
2、企业的每个岗位、每个人员都在进行着与企业相关的经营和管理活动,都在掌握着企业相关资源,拥有这些资源的信息和记录,这些资源与资源转换活动就是企业大数据的发源地。只要每个岗位的员工都能参与到数据采集和数据记录的过程中,或者配合着相关的设备完成对数据的采集工作,企业积累自己的大数据就是一件非常容易的事情。
3、政府或机构公开的行业数据其实更好获取,如国家统计局、中国统计学会、中国投入产出学会等。在这些网站中可以很方便地查询到一些数据,如农业基本情况、工业生产者出厂价格指数、能源生产总量和构成、对外贸易和利用外资等等数据。并且可以分为月报、季报、年报,如果坚持获取分析,对行业的发展趋势等都是有很大的指导作用。
4、如果需要的数据市场上没有,或者不愿意购买,可以选择招/做一名爬虫工程师,自己动手去爬取数据。可以说只要在互联网上看到的数据都可以把它爬下来。在网络爬虫的系统框架中主过程由控制器,解析器,资源库三部分组成,控制器的主要工作是负责给多线程中的各个爬虫线程分配工作任务,爬虫的基本工作是由解析器完成,资源库是用来存放下载到的网页资源。
企业大数据来源合理,大数据工程师才能更准确的进行大数据分析,所以大数据工程师也要不断进行自我能力提升,才能更好的进行数据分析。
⑹ 大数据的中的数据是从哪里来的
大数据应用中的关键点有三个,首要的就是大数据的数据来源,我们在分析大数据的时候需要重视大数据中的数据来源,只有这样我们才能够做好大数据的具体分析内容。那么大家知不知道大数据的数据来源都是通过什么渠道获得的?下面就由小编为大家解答一下这个问题。
对于数据的来源很多人认为是互联网和物联网产生的,其实这句话是对的,这是因为互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。而物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据的数据来源,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,是我们常用的数据来源。
而数据的来源是我们评价大数据应用的第一个关注点。首先需要我们看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是好数据还是坏数据,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,只有我们找到了好的数据来源,我们就能够做好大数据的工作。这句需要我们去寻找数据比较密集的领域。
一般来说,我们获取数据的时候需要数据密集的行业中挖掘数据,主要就是金融、电信、服务行业等等,而金融是一个特别重要的数据密集领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。
我们在这篇文章中为大家介绍了大数据的数据来源以及数据密集的领域,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
⑺ 大数据工程师如何进行统计数据分析
【导读】随着大数据时代的到来,数据资源已经成为一种新的资源形式,在这样的布景之下,怎么科学运用大数据,将其价值进行充分地挖掘、剖析,有效促进社会开展成为各行业开展之下的重要方向。那么,大数据工程师如何进行统计数据分析呢?
1.规划和解说试验以指导产品决策
数据剖析师能够协助确认这种差异是否足够显着,以致需求引起更多的关注,关注和出资。它们能够协助你了解试验成果,这在你测量多个指标,运行相互影响的试验或成果中产生某些Simpson悖论时特别有用。
2.树立猜测信号而非噪声的模型
数据剖析师能够告知你或许的原因,为什么销量增长了5%。数据剖析师能够协助你了解推进出售的要素,下个月的出售状况以及需求注意的潜在趋势。
请参阅什么是过度拟合的直观解说,尤其是对于少量样本集?过度拟合实际上是在做什么?高R,低标准误差的过高许诺怎么产生?了解为什么仅适合信号这一点很重要。
3.将大数据变成全局
任何人都能够观察到该企业有100,000个客户在你的杂货店购买10,000个项目。
数据剖析师能够协助你标记每个客户,将他们与相似的客户分组,并了解他们的购买习惯。这样一来,你便能够查看事务开展怎么影响特定人群,而不用整体看待每个人或独自看待每个人。
4.了解用户的参加度,保存率,转化率和潜在客户
为什么你的客户从你的网站上购买商品?你怎么保持客户回头客?为什么用户退出你的渠道?他们什么时候出来?你公司最喜欢哪种电子邮件来招引用户?参加,活动或成功的一些首要指标是什么?有哪些好的出售线索?
运用的统计数据:回归,因果剖析,潜在变量剖析,调查规划
5.给用户他们想要的东西
给定用户(客户,客户,用户)及其与公司项目(广告,商品,电影)之间的互动(点击,购买,评级)的矩阵,你能否建议用户接下来要购买哪些项目?
6.智能预算
0%能够很好地预算点击率吗?数据剖析师能够结合数据,全局数据和先验常识来获得抱负的估计值,告知你该估计值的属性,并总结该估计值的含义。
7.用数据讲故事
数据剖析师在公司中的人物是充任数据与公司之间的大使。沟通是关键,并且数据剖析师必须能够以公司能够运用的方法解说他们的见地,而又不牺牲数据的保真度。
数据剖析师不只简单地总结了数字,还解说了数字为何如此重要以及从中能够得到哪些可行的见地。
以上就是小编今天给大家整理发送的关于大数据工程师如何进行统计数据分析的全部内容,希望对大家有所帮助。所谓不做不打无准备之仗,总的来说随着大数据在众多行业中的应用,大数据技术工作能力的工程师和开发人员是很吃香的,希望各位小伙伴们再接再厉,越来越优秀。
⑻ 如何进行大数据分析及处理
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。
另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。
语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。
处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。
一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。
比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。
并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。
也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。
比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。
该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
⑼ 什么是大数据分析 主要应用于哪些行业以制造业为例
大数据作为IT行业最流行的词汇,围绕大数据的商业价值的使用,随之而来的数据仓库、数据安全、数据分析、数据挖掘等,逐渐成为业界所追求的利润焦点。随着大数据时代的到来,大数据分析也应运而生。
1.大数据分析主要应用于哪些行业?
制造业: 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业: 大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业: 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业: 借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业: 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
2.大数据分析师就业前景如何?
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
3.关于大数据分析具体含义?
1、数据分析可以让人们对数据产生更加优质的诠释,而具有预知意义的分析可以让分析员根据可视化分析和数据分析后的结果做出一些预测性的推断。
2、大数据的分析与存储和数据的管理是一些数据分析层面的最佳实践。通过按部就班的流程和工具对数据进行分析可以保证一个预先定义好的高质量的分析结果。
3、不管使用者是数据分析领域中的专家,还是普通的用户,可作为数据分析工具的始终只能是数据可视化。可视化可以直观的展示数据,让数据自己表达,让客户得到理想的结果。
什么是大数据分析 主要应用于哪些行业?中琛魔方大数据平台指出大数据的价值,远远不止于此,大数据针对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。
我们可以看看亿信华辰关于制造业的案例,
某电建集团主要从事国内外高速公路、市政、铁路、轨道交通、桥梁、隧 道、城市综合体开发、机场、港口、航道、地下综合管廊以及生态水环境治理、海绵 城市建设、环境保护等项目投资、建设、运营等,为客户提供投资融资、咨询规划、 设计建造、管理运营一揽子解决方案和集成式、一体化服务。成立以来,投资建设了 一大批体量大、强度高、领域宽的基础设施及环保项目。
该公司的数据化建设,或将成为新型基础设施建设的一个缩影。
项目背景 数字经济时代,数据资源已经成为企业的核心资源和核心竞争力,各类企业信息化建设的重心正从 IT(信息技术) 向 DT(数据技术) 转化,未来信息化建设的重心将是如何对组织内外部的数据进行深入、多维、实时的挖掘和分析,以满足决策层的需求,推动信息化向更高层面进化,构筑公司数字经济时代的新优势。目前,由于各级各部门大量的时间用在内外部各种繁杂的报表填报、汇总、统计和分析上,同时各级领导有对公司或者所辖单位的整体经营情况仍旧通过传统的汇报、传统的报表等了解,缺乏直观和可视化系统支撑决策分析,主要存在问题如下:1、数据孤岛严重各级各部门数据无法有效共享,跨部门跨层级的数据采集、共享和分析利用困难。2、数据采集方式落后数据采集仍旧采用传统 EXCEL 方式进行,缺乏自下而上的数据采集、数据审核、数据报送、汇总分析的数据采集平台支撑,导致数据源分散、数据标准不统一、数据质量难以保证、数据采集效率低下。3、缺乏统一的决策经营指标体系和数据资源统一管理机制导致数据资源不能有效利用,价值无法充分发挥,无法为各级领导决策提供有效支持。
建设内容 为彻底解决以上问题,根据需求和数据资产类项目建设方式,系统实现按照“指标资源整理-应用场景展现设计--数据获取-指标资源池-页面实现-决策门户 ”的方式设计。即根据梳理的指标体系应用场景需要确定设计展现界面展现内容,根据展现内容确定指标体系,根据指标体系来并收集相关数据。
1、搭建智能填报系统 梳理指标体系,构建决策指标和主题指标,明确指标类型,指标数据来源,各指标输出口径:是否填报、填报维度与对象、填报周期等等。实现公司各级各部门自下而上决策数据填报、数据审核、 数据报送、汇总查询、数据补录等全过程网络化数据采集的需要。
2、构建经营决策指标体系构建公司经营决策指标体系。收集数据分析需求,分析汇总形成公司市场、经营、履约、运营、项目等生产经营关键指标和相关数据分析主题、指标,形成指标 资源池,实现决策数据的体系化、指标化和模型化。
3、决策指标体系建设根据某电建集团提供数据的内容和主要特征,将决策指标体系的指标分为运营指标、经营指标、整体指标、市场指标、履约指标五类一级指标。每类一级指标又分别由若干个二级指标组成。
4、建设决策支持系统通过亿信BI工具,基于报表采集的数据和相关信息系统积累的数据, 初步构建管理驾驶舱,满足面向公司决策层和部门领导的数据分析,可视化图表化辅助领导管理决策,并集成电建通APP应用,实现决策移动化。
5、搭建自助式BI通过豌豆BI工具搭建自助式 BI。为市场营销、建设管理、资产运营、财务管理等部门有自助探索数据分析的业务人员提供自助式可视化分析工具。
价值体现 在合作中,亿信华辰根据当前数据分析应用的诉求,帮助该电建集团建设决策整体指标、市场指标、履约指标、运营指标五个模块,提供了从数据采集、数据汇总到指标口径定义、指标建模、指标数据落地和数据可视化分析于一体的完整的解决方案。决策管理平台以业务分析平台为基础,以更核心的指标、更直观的展现方式实现数据的分析与监控,支撑领导层的管理决策。主要包括管理驾驶舱、项目看板专题、市场专题、经营专题、履约专题、运营专题等场景。使数据资源得到充分利用,最大程度的发挥数据价值。