『壹』 阿里的总监将大数据、数字化的经验,总结成资料干货,可以收藏
阿里把企业的数字化转型划分为“数字化重构”和“数字化增长”两大类别,这个概念是不是听着很难懂?
重构,就是转型嘛;增长,就是更进一步嘛,说白了还是原来的老样子,换了个解释而已。
说到数字化转型,我觉得这是一个非常好的话题,甚至能衍生出很多干货,无论是传统企业,还是顶尖的互联网大公司,如阿里腾讯,老板都在朝这个方向努力。
所以和大数据有关的知识,还是很有必要学习的。
我给大家整理了很多干货,我从一个10年从业者和管理者的角度,这份干货,无论是底层干活的,中层管控的,上层布局的,都能够很清楚的学习到。
涉及到的方面还是很广的:大数据、数仓、中台、AI、IT规划、大数据平台、BI工具。
我是怎么总结的?
从架构入手,到每个模块的分解,再到每个地方的注意点,基本上就行了,太细的也不是通过文字去说清楚的。
只要能做到,看了干货资料,能对实际工作产生指导,就可以了。
这只是一部分,还有更多,自己来看就好。
『贰』 阿里大数据营销存在哪些问题
问题有如下几点:
1、数据存在失真情况。数据的失真主要体现在两个方面:一方面,消费者在注册时可能会输入虚假的个人信息或者是一人使用多个账户、使用他人账户等,其在网络操作过程中产生的数据信息本身就不真实,另一方面,由于网络技术的发展和消费者的个性化需求促使阿里巴巴每隔一段时间就要进行网站维护与更新,在这个过程中,会有不少用户因为不熟悉新的界面而进行错误的操作,这些错误的操作信息也被阿里巴巴记录,造成数据库中真假信息混杂,严重影响了大数据的质量。
2、消费者的个人权益难以保障。直至目前,阿里巴巴仍没有提出有效预防用户信息泄露的方法或是用户信息泄露之后的维护方法。
3、大数据营销效果易出现两极化。用户在使用淘宝的过程中会将自己的手机号码、邮箱等联系方式提供给阿里巴巴,为了扩大经营,阿里巴巴会进一步分析数据库中的客户需求,针对不同的客户,通过短信、邮件等形式向客户推销产品,这在某些方面增加了客户,然而大多情况下这些信息会被消费者无视,更有甚者,会引起消费者的反感,因此,大数据营销的效果如何,仍存在极大的不确定性,效果难以预料。
『叁』 阿里巴巴运用大数据包括哪些
大数据计算服务(MaxCompute,原ODPS)
Data IDE(原BASE)
数据集成(原CDP云道)
大数据基础服务包括 Maxcompute 分析型数据库等
大数据分析于展现包括 Date V Quick BI 画像分析等
大数据应用 包括 推荐引擎 企业图谱
『肆』 安防“搅局者”阿里
阿里商业扩张的对象又多了一个千方。
昨日消息,阿里36亿元入股智慧城市领域上市公司千方 科技 ,成为其第二大股东。
阿里的商业大盘上,“智慧城市”绝对是其中的重要筹码,这个充斥着野心和荷尔蒙的“产品”,正因为边界模糊而变得前景广大。
那么,面对诺大的智慧城市,商业利剑最佳的刺入点会在哪里?
一个行业鲜少让所有的从业者都能达成共识,AI行业是个例外,几乎所有的从业者都认为: 智能安防、智慧交通会是最先爆发的 AI 产业。
如果说智慧交通、智能安防是各路玩家必须经过的一站,那么在高手如云的产业圈,阿里为什么把绣球抛给了千方?
故事还要从两年前说起。
2017年11月,千方 科技 以47亿的“聘礼”,成功让宇视 科技 “远嫁”北京。
作为国内领先的安防企业,2018年宇视市场排名暂列全球第六;产品卖到全球145个国家;智能交通项目达330多个;并推出了人工智能产品 “六山两关”和人工智能方案”AI Ready”。
作为智能交通系统集成领域的玩家,千方的入局,看傻了很多吃瓜群众,但是惊艳了整个轨道交通市场。
于千方,作为一家上市公司,它长期专注于交通集成领域,将宇视招入麾下,可以快速将业务范畴延伸到安防制造领域,并且可以跳出智能交通这个井底,将业务触角延伸到智慧城市这个国家新的大投资战略上。
同时,也可以借助宇视在公检法、医疗、教育、能源、企业、零售等领域的资源,将自身在交通领域的集成产品拓展进去。
不出意外,2018年,千方 科技 取得了长足进步。
首先体现在证券市场,在整个2018年A股上证指数跌了近1000点,众多“明星股”纷纷下跌的大背景下,千方 科技 在A股市场表现得非常坚韧,市值一直保持在原先的水平,不掉价。
其次,从产品层面来看,千方 科技 在车路协同领域,基于LTE-V标准的产品研发规模展开,已进入规模量产及系列化阶段,车载单元、路侧单元已通过工信部组织的互联互通测试及无委的型号核准,这些都会成为千方 科技 在智能交通赛道竞争的绝对壁垒。
在战略布局上,千方推出了“一体两翼”发展战略,“一体”是围绕智慧城市保持大数据与人工智能的优势,“两翼”是智慧交通和智能安防两大业务版块,也可以理解为千方与宇视。
此番布局,“恰巧”吻合了阿里的未来战略布局。从这来看,阿里入股,属意料之外,但也在情理之中。
阿里在安防行业“闻名”主要得益于城市大脑的快速复制落地。
在阿里技术委员会主席王坚眼里,“城市大脑”具有人类登月般的重要意义。它像是杭州献给整个世界的一个礼物,就像当年罗马给了世界一个下水道,伦敦给了世界一辆地铁,纽约给了世界一张电网。
眼下,阿里已经为包括雄安、澳门、吉隆坡在内的数十座海内外城市送去了厚礼。
与此同时,伴随着项目落地也有一些声音此起彼伏,很多业内人士认为,阿里做安防,醉翁之意不在酒,城市大脑背后实则是城市“数据”的殊命争夺。
举例来说,2017年,衢州市政府拨款4.37亿元,要联合阿里为这座古老的城市打造“城市大脑”。
4.37亿元其实“并不多”。
按照项目方的说法,衢州“城市大脑”将分为多期进行建设,这笔资金主要用于城市大数据平台及软件层建设所用。
通常,一个三四线城市,摄像头总数预估在2000到10000路左右,建设大数据中心需要考虑到余量配备,也就意味着上万路的硬件搭建较为容易。比如湖南省会长沙市,摄像头全部建满应该能到10万路左右。
以一万路计算,视频分析服务器均价为30万元/台,支持同时100多路数据分析,由此需要的服务器可能3000万元朝上(路数只代表原始数据量,而实际的价格往往是和分析的计算成本强相关,个体差异很大),其他各类数据分析假设与之对等,考虑到整个机房配置等,所需费用在2亿元左右。
如果最后刨去人工等其他成本,阿里在每个城市的“城市大脑”项目上能够获得一定的营收,但利润相比其主航道业务是小巫见大巫。(此前,阿里还以4.55 亿元的价格中标海口“城市大脑”建设,具体金额都相差不大。)
即便如此,可以发现除了阿里,包括腾讯、京东、网络等互联网巨头都加足马力,争抢着进入这条赛道。投入产出比并不诱人的背后,这些互联网企业为何要在建设智慧城市上花费如此大的精力?
某业内高管告诉雷锋网,可以预见得到的未来趋势是,硬件会为软件服务,而不是相反。 全力进军安防的互联网公司们意图已经非常明显:要做物联网时代的大数据运营商。
相关数据统计,到2025年,全球数据圈将增至175ZB(1ZB约为1万亿GB),而中国预计将以48.6ZB的数据量成为全球最大数据圈。
与此同时,“数据变现”问题一直以来都极大困扰着传统的数据持有企业,相比之下,互联网公司对于客群需求和消费行为的研究远超于传统公司,后者在流量“变现”的布局上显得更加得心应手。
以往,包括阿里在内的互联网厂商更多掌握的是用户线上数据,而线下数据基本是一片空白。
这也就意味着,数据大战中,谁掌握了更多的视频监控路数,谁就能构建更加精准的用户画像,从而更好知悉、满足用户诉求,获得大数据时代更大的话语权。
创新不是一个崭新产品的诞生,而是现有的产品被赋予了新的用途,可以预见的是,线上数据与线下数据的打通,将为所有公司打开一扇从未涉足的世界的窗户。
譬如,未来在新零售市场,通过视频监控的铺设,可以对线下海量商铺形成覆盖“店前”、“店中”、“收银”各个环节的整套解决方案。
店前设备负责客流分析。当消费者走到门店前时,摄像头开始抓拍,分析其是新客、老客还是VIP。
此外,在收银台场景下,摄像头还可以清晰地记录购买者的客户属性,比如年龄、性别等;对商品的购买人群进行分析,有助于门店后期针对目标客户进行更精准的商品推广等。
店前、逛店、收银对应着零售行业消费者的生命周期。
门前经过的是“游客”,进店后成了“客户”,再进入收银环节就是“用户”。利用这一整套的服务,相关互联网企业可以帮助线下门店更好地了解门店的客流情况和店内销售转化。通过获取和分析用户数据实现从选址到营销的全面赋能,把“游客”最终变成“用户”。
数据变现是一个很大的课题,也是一个很有趣的课题,因为它没有界限、没有方向,是一个完全的黑盒子,等待着每一个人去 探索 。
佳都集团董事长刘伟甚至认为,对于企业来说,数据是21世纪的石油;对于个人而言,数据是其生活的再现;对于政府来说,数据是基础性的战略资源。
有着明确目标的阿里,在智能安防市场,虽然有些迟到,但是玩起小步快跑来,这个互联网巨头丝毫不含糊,在庞大商业生态的加持下,阿里手握几张好牌。
从产品层面来看,阿里云此前发布了云边端物联网视频服务Link Vision 1.0。
“ 阿里这招非常狠,顺利的话,他们可以做到视频物联网,真正实现城市大脑 。”对于这款产品,华泰科捷CEO傅剑辉如是说。
Link Vision 1.0包含了物联网视频开放平台和物联网视频AI解决方案,它可以帮助传统摄像头厂商与安防工程商更好实现数字化和智能化转型。
也就是说它能从技术上解决中小企业盈利模式单一、画质不佳、体验欠佳、亦或是安全性得不到解决的现实问题。
阿里云这一招数实际上与东方网力当年在模拟向数字转换时做的联网控制器有异曲同工之处。
其目的是将各种模拟的摄像机、DVR、DVS、模拟矩阵、IPC、NVR、网络矩阵用一个网关设备连接在一起,那么它的核心就是今天所谈的多媒体、数据网关。
阿里提出的这个边缘化产品一来可以被部署到每一个城市中的每一个节点;其次,基于边缘云的视频结构化运算,它能够将很多消费级安防摄像机接入到阿里云平台上,通过边缘云计算服务器完成数据结构化。
如此,阿里便通过视频物联网拿到了城市视频的数据,而这一点是阿里以前做不到的。
今天来看,华为也在搭建一张云、海康也在织编一张云,后期谁能够拿到更多的视频、更多的数据,后期的竞争力也就越强。
从战略布局上看,本次入股千方也可以认为是一张绝佳好牌。
如果说产业经营是做‘加法’,那么投资并购就是做‘乘法’。未来的市场份额争夺会更偏向于报团取暖式进取,个人英雄式的单打独斗已经成为过去。
一个企业的并购行为,从某种意义上来说,并不是简单追求规模效益的推动,而是为未来的协同发展打好基础。
阿里入股千方,无论就智慧城市大产业而言,还是针对智慧交通、智能安防等细分领域,都是一桩赢面更大的买卖。
安防也好、交通也罢,都是非常“重”的行业,此前很多大型企业在其中蛰伏良久,但最后都铩羽而归,主要原因就是产品丰富度不够;另外不具有供应链优势,一些与传统视频图像相关的器件,如镜头等的供应能力存在不足,在机电控制方面也没有足够的积累。
阿里的优势在于云端,针对边缘端来说,如果单个城市地去攻坚、去做重,费力不讨好,选择入股千方,联手宇视无疑是最佳的入局方式。
早在战国时期,诸侯并起、相互兼并,出现战国七雄,历经合纵连横,最终秦王扫六合,一统天下。
两千多年后,在全球一体化的趋势下,贸易、技术、服务、管理、资源、资本、智力等一切推动经济增长的要素都在不可逆转地荡涤着各国的经济边界。
在这个过程中,投资并购就是资源整合、就是扫荡边界、就是重新洗牌;同理,此路数在安防行业也同样适用。
比如海康威视曾收购英国公司SHL,进一步开拓海外市场;大华股份也曾以2900万美元收购FLIR旗下Lorex品牌,扩张北美销售网络,如此等等。
行业需要搅局者。
183年前,一艘载有500名装备枪械、木棍和战斧的毛利人的英国海船在群岛登陆。随之,制造了针对岛上莫里奥里人的大屠杀,并将幸存者作为奴隶驱使。
要知道,时间倒数千年,莫里奥人也是强大的波利尼西亚雄鹰,这一次相比来势汹汹的毛利人,严重退化。
历史 与商业从来都是惊人的相似,有着同等的规律使然。
从外企雄霸到海大宇并起再到各路英雄入局,安防前端AI与云端AI业务间的战场,从安防公司与AI公司两大势力之争,进入安防公司、 科技 巨头、AI公司三局鼎立的局面。
三类公司,战术不同、战略迥异。
从横向讲,海康、大华为“防御派”;商汤、旷视为“革新派”; 阿里、华为为“进攻派”。
海康、大华等传统安防巨头的打法重“边缘”,从上到下,保持软硬一体化优势;
商汤、旷视、地平线等AI独角兽的战略打法则从外向内,通过算法进击云端,通过芯片主攻IPC,从而布局中心控制系统,基于顶层设计做服务;
阿里、华为等产业巨兽进军安防的思路比较清晰,凭借较深的行业渠道积累搭建自己的平台,吸引更多合作伙伴,打造更大的泛安防生态圈。
今天来看,阿里的智慧城市版图又多了千方、宇视两个优质伙伴。雷锋网雷锋网雷锋网
『伍』 为什么阿里巴巴会斥资百亿在乌兰察布市建立大数据平台
为了推进华为、苹果北方数据、阿里巴巴、优刻得、中联利信、同舟汇通等大数据项目建设运营,集宁区借助京蒙对口帮扶,在察哈尔工业园区内规划建设了 6.5 平方公里的大数据产业园,推动大数据项目的发展及信息化建设、信息产业发展。
阿里云已经走在了亚洲云计算的前列,如今它已经正式对外宣布,会在中国的乌兰察布市建立一个大数据中心。消息一出,引得无数人摸不着头脑,都不知道啊,阿里云为什么要在这个名不见经传的城市,做这么重要的战略布局。
加大大数据产业基础设施投资力度,同时也在加快数据中心建设之步伐,2019年,共续建、新建及拟建数据中心项目 8 项,计划总投资 171.8亿元,总占地面积 1220 亩,承载 100 万台服务器。不难看出乌兰察布市现在正在以数据存储、产品研发、数据交易为核心的大数据中心建成后,将铸就高新科技产业载体,夯实大数据产业发展的基础层,进一步拓展上下游产业和配套产业,实现产业体系全覆盖的准备进行中。
这就是为什么阿里巴巴为什么会斥资百亿在乌兰察布市建立大数据平台。不仅满足当下以及未来大数据产业发展、互联网经济发展需求,提高传统劳动力数字技能、提升数字化素养,也符合乌兰察布市政府以及国家对此的重视,让其共同来努力推动“互联网+”及云计算、电子信息产品制造、电子商务和服务外包等关联产业协同发展,倾力打造成为面向华北、服务京津冀的大数据与云计算中心,打响“草原云谷”的品牌,擎画大数据产业发展的蓝图,深化大数据和云计算各领域应用。
『陆』 大数据数仓项目架构
云上数据仓库解决方案: https://www.aliyun.com/solution/datavexpo/datawarehouse
离线数仓架构
离线数仓特点
基于Serverless的云上数据仓库解决方案
架构特点
实时数仓架构
[图片上传失败...(image-ec3d9a-1629814266849)]
实时数仓架构特点
秒级延迟,实时构建数据仓库,架构简单,传统数仓平滑升级
架构特点
数据仓库的输入数据源和输出系统分别是什么?
输入系统:埋点产生的用户行为数据、javaEE后台产生的业务数据、个别公司有爬虫数据。
输出系统:报表系统、用户画像系统、推荐系统
1)Apache:运维麻烦,组件间兼容性需要自己调研。(一般大厂使用,技术实力雄厚,有专业的运维人员)
2)CDH:国内使用最多的版本,但 CM不开源,但其实对中、小公司使用来说没有影响(建议使用)10000美金一个节点 CDP
3)HDP:开源,可以进行二次开发,但是没有CDH稳定,国内使用较少
服务器使用物理机还是云主机?
1)机器成本考虑:
(1)物理机:以128G内存,20核物理CPU,40线程,8THDD和2TSSD硬盘,单台报价4W出头,惠普品牌。一般物理机寿命5年左右。
(2)云主机,以阿里云为例,差不多相同配置,每年5W
2)运维成本考虑:
(1)物理机:需要有专业的运维人员(1万*13个月)、电费(商业用户)、安装空调
(2)云主机:很多运维工作都由阿里云已经完成,运维相对较轻松
3)企业选择
(1)金融有钱公司和阿里没有直接冲突的公司选择阿里云(上海)
(2)中小公司、为了融资上市,选择阿里云,拉倒融资后买物理机。
(3)有长期打算,资金比较足,选择物理机。
根据数据规模大家集群
属于 研发部 /技术部/数据部,我们属于 大数据组 ,其他还有后端项目组,前端组、测试组、UI组等。其他的还有产品部、运营部、人事部、财务部、行政部等。
大数据开发工程师=>大数据组组长=》项目经理=>部门经理=》技术总监
职级就分初级,中级,高级。晋升规则不一定,看公司效益和职位空缺。
京东:T1、T2应届生;T3 14k左右 T4 18K左右 T5 24k-28k左右
阿里:p5、p6、p7、p8
小型公司(3人左右):组长1人,剩余组员无明确分工,并且可能兼顾javaEE和前端。
中小型公司(3~6人左右):组长1人,离线2人左右,实时1人左右(离线一般多于实时),组长兼顾和javaEE、前端。
中型公司(5 10人左右):组长1人,离线3 5人左右(离线处理、数仓),实时2人左右,组长和技术大牛兼顾和javaEE、前端。
中大型公司(10 20人左右):组长1人,离线5 10人(离线处理、数仓),实时5人左右,JavaEE1人左右(负责对接JavaEE业务),前端1人(有或者没有人单独负责前端)。(发展比较良好的中大型公司可能大数据部门已经细化拆分,分成多个大数据组,分别负责不同业务)
上面只是参考配置,因为公司之间差异很大,例如ofo大数据部门只有5个人左右,因此根据所选公司规模确定一个合理范围,在面试前必须将这个人员配置考虑清楚,回答时要非常确定。
IOS多少人 安卓多少人 前端多少人 JavaEE多少人 测试多少人
(IOS、安卓) 1-2个人 前端1-3个人; JavaEE一般是大数据的1-1.5倍,测试:有的有,有的没有。1个左右。 产品经理1个、产品助理1-2个,运营1-3个
公司划分:
0-50 小公司
50-500 中等
500-1000 大公司
1000以上 大厂 领军的存在
转自: https://blog.csdn.net/msjhw_com/article/details/116003357
『柒』 阿里巴巴大数据真的很牛吗
刚刚参来加完阿里巴巴在北大的技术自论坛。有些可以作为回答而分享。
阿里巴巴在08年就把大数据作为一项公司基本战略,要知道那个时候甚至还没几个人开始谈论“大数据”,可以说在大数据方面相比于国内其他互联网公司,阿里是走在前面的。
按马云的话讲,我们正从information technology转向data technology。数据是灵魂。也许并不能保证大数据能给阿里巴巴赚很多钱,但是阿里认为数据对人类有用,所以他们做了。
举一个阿里CTO认为大数据应用和价值的例子:淘宝小贷团队,很小的队伍,完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,这是传统商业银行冗杂的审核程序,低效和高成本所不能比的。更重要的是,这个项目给近百万的小商户提供了生命线,哪怕只贷一元钱。没有哪个银行会这么做。
我认为阿里巴巴已经是国内互联网大数据的先驱,他们在做有意义的事情。
『捌』 7.阿里大数据——大数据建模
数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。
适合业务和基础数据存储环境的模型,大数据能获得以下好处:
大数据系统需要数据模型方法来帮助更好的组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。
不管是Hadoop、Spark还是阿里巴巴集团的MaxCompute系统,仍然在大规模使用SQL进行数据的加工和处理,仍然在用Table存储数据,仍然在使用关系理论描述数据之间的关系,只是在大数据领域,基于其数据存取的特点在关系数据模型的范式上有了不同的选择而已。
从全企业的高度设计一个3NF模型,用实体关系(Entity Relationship,ER)模型描述企业业务,在范式理论上符合3NF。数据仓库中的3NF与OLTP中不同过,有以下特点:
ER模型建设数据仓库的出发点是整合数据,为数据分析决策服务。建模步骤分为三个阶段:
维度建模从分析决策的需求出发构建模型,为分析需求服务,因此它重点关注用户如何更快速地完成需求分析,同时具有较好的大规模复杂查询的响应性能。其典型代表事星形模型,以及在一些特殊场景下使用的雪花模型。其设计步骤如下:
它是ER模型的衍生,其设计的出发点也是为了实现数据的整合,但不能直接用于数据分析决策。它强调建立一个可审计的基础数据层,也就是强调数据的历史性、可追溯性和原子性,而不要求对数据进行过度的一致性处理和整合。该模型由一下几部分组成:
Anchor对Data Vault模型做了进一步规范化处理,设计的初衷是一个高度可扩展的模型,其核心思想是所有的扩展只是添加而不是修改,因此将模型规范到6NF,基本变成了k-v结构化模型。组成如下:
经历了多个阶段:
『玖』 从IT到DT 阿里大数据背后的商业秘密
从IT到DT:阿里大数据背后的商业秘密
空气污染究竟在多大程度上影响了人们的网购行为?有多少比重的线上消费属于新增消费?为什么中国的“电商百佳县”中浙江有41个而广东只有4个?
这些电商的秘密就隐藏在阿里巴巴商业生态的“大数据”中。
“未来制造业的最大能源不是石油,而是数据。”阿里巴巴董事局主席马云如此形容“数据”的重要意义。
在他看来,阿里巴巴本质上是一家数据公司,做淘宝的目的是为了获得零售的数据和制造业的数据;做蚂蚁金服的目的是建立信用体系;做物流不是为了送包裹,而是这些数据合在一起,“电脑会比你更了解你”。与此同时,产业的发展也正在从IT时代走向以大数据技术为代表的DT时代。
而在阿里巴巴内部,由电子商务、互联网金融、电商物流、云计算与大数据等构成的阿里巴巴互联网商业生态圈,也正是阿里研究院所扎根的“土壤”。
具体而言,阿里巴巴平台的所有海量数据来自于数百万充满活力的小微企业、个人创业者以及数亿消费者,阿里研究院通过对他们的商务活动和消费行为等进行研究分析,从某种程度上可以反映出一个地方乃至宏观经济的结构和发展趋势。
而随着阿里巴巴生态体系的不断拓展和延伸,阿里巴巴的数据资源一定程度上将能够有效补充传统经济指标在衡量经济冷暖方面存在的滞后性,帮助政府更全面、及时、准确地掌握微观经济的运行情况。
从IT到DT
不同于一些企业以技术研究为导向的研究院,阿里研究院副院长宋斐告诉《第一财经日报》记者,阿里研究院定位于面向研究者和智库机构,主要的研究方向包括未来研究(如信息经济)、微观层面上的模式创新研究(如C2B模式、云端制组织模式)、中观层面上的产业互联网化研究(如电商物流、互联网金融、农村电商等)、宏观层面上新经济与传统经济的互动研究(如互联网与就业、消费、进出口等)、互联网治理研究(如网规、电商立法)等。
具体到数据领域,就是在阿里巴巴互联网商业生态基础上,从企业数据、就业数据、消费数据、商品数据和区域数据等入手,通过大数据挖掘和建模,开发若干数据产品与服务。
例如,将互联网数据与宏观经济统计标准对接的互联网经济数据统计标准,包括了中国城市分级标准;网络消费结构分类标准;网上商品与服务分类标准等。
而按经济主题划分的经济信息统计数据库则包括商品信息统计数据库;网购用户消费信息统计数据库;小企业与就业统计数据库;区域经济统计数据库。
还有反映电商经济发展的“晴雨表”——阿里巴巴互联网经济系列指数。其中包括反映网民消费意愿的阿里巴巴消费者信心指数aCCI、反映网购商品价格走势的阿里巴巴全网网购价格指数aSPI和固定篮子的网购核心价格指数aSPI-core、反映网店经营状态的阿里巴巴小企业活跃度指数aBAI、反映区域电子商务发展水平的阿里巴巴电子商务发展指数aEDI等等。其中,现有aSPI按月呈报给国家统计局。
而面向地方政府决策与分析部门的数据产品“阿里经济云图”,则将分阶段地推出地方经济总览、全景分析、监测预警以及知识服务等功能。宋斐告诉记者,其数据可覆盖全国各省、市、区县各级行政单位,地方政府用户经过授权后,可以通过阿里经济云图看到当地在阿里巴巴平台上产生的电子商务交易规模、结构特征及发展趋势。
“借助数据可视化和多维分析功能,用户可以对当地优势产业进行挖掘、对消费趋势与结构变动进行监测、与周边地区进行对比等等。”宋斐表示,该产品未来还可以提供API服务模式,以整合更多的宏观经济数据和社会公开数据,为当地经济全貌进行画像,给大数据时代的政府决策体系带来新的视角和工具。
数据会“说话”
对于如何利用“大数据”,马云在公司内部演讲中曾提到:“未来几年内,要把一切业务数据化,一切数据业务化。”
其中,后半句话可以理解为,让阿里巴巴各项业务所产生、积累的大数据来丰富阿里的生态,同时让生态蕴含的数据产生新的价值,再反哺生态,这是一个相辅相成的循环逻辑。
宋斐对记者举例称,蚂蚁金服旗下的芝麻信用已获得人民银行个人征信牌照批准筹备,未来将通过分析大量的网络交易及行为数据,如用户信用历史、行为偏好、履约能力、身份特质、人脉等信息,对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。本质上来说,“芝麻信用”是一套征信系统,该系统收集来自政府、金融系统的数据,还会充分分析用户在淘宝、支付宝等平台的行为记录。
再如,对于如火如荼的农村电商领域,阿里研究院从2010年就已开始对“沙集模式”个案进行研究,后续一系列基于数据和案例调研所驱动的农村电商研究成果,对于地方政府科学决策,推动当地农村电子商务发展、创造就业和发展地方经济起到了助力作用。到2014年底,全国已经涌现了212个淘宝村,而阿里巴巴也在这一年启动千县万村计划,将在三至五年内投资100亿元,在农村建立起电子商务服务体系。
除了通过数据分析去助力业务外,宋斐告诉记者,有时候大数据报告可能会与传统的印象结论差异很大。
以区域电子商务为例,在阿里研究院发布的2014年中国电商百强县排行榜中,浙江有41个县入围,福建有16个,而广东只有4个,这个结果与传统的印象相差比较大。而事实上,这是因为浙江和广东两省电商发展在地理分布、产业结构等方面的明显不同而带来的。
再如,外界常常认为网络零售替代了线下零售,但事实上,麦肯锡《中国网络零售革命:线上购物助推经济增长》的研究报告,通过借鉴阿里研究中心(阿里研究院前身)和淘宝网UED用户研究团队的大量报告与数据,最后发现:“约60%的线上消费确实取代了线下零售;但剩余的40%则是如果没有网络零售就不会产生的新增消费。”
“这一研究成果,有助于社会各界准确认识网络零售与线下零售的关系,共同探索和建设良好的商业发展环境。”