❶ 大数据具体是做什么有哪些应用
大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。
❷ 大数据存在的意义和用途是什么
将大数据分析纳入流程的做法揭示了非结构化数据,从而有助于管理者以系统的方式分析其决策,并在需要时采取替代方法。
2、“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
3、大数据的意义在于变革经济的力量:生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
4、大数据的意义表现在变革组织的力量:随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。
❸ 大学生怎么运用大数据建设社会主义
一、大数据及其特点
大数据目前尚无明确定义。维基网络对大数据的定义是:大数据是指所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到截取、管理、处理并整理成为帮助企业经营决策更积极目的的信息【1】。徐子沛在《大数据》一书中将大数据定义为:指那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据【2】。《大数据时代》的作者维克·托迈尔·舍恩伯格认为,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的。大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”【3】8-9《人民日报》在采访他时,他曾说:“在我看来,大数据是一种价值观、方法论,我们面临的不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。这是一场思维的大变革,更是一个互动的过程——你可以用不同的角度、不同的方式去做大数据,并得到不一样的结果与好处。”【4】据此,笔者认为:大数据是大规模数据中,可以通过有效技术手段快速获取、存储、管理并分析出可以推动社会发展的有价值的数据。
目前普遍认可大数据的四个基本特征,即4V特性:规模大(Volume)、来源广泛且类型多样(Variety)、获取及处理速度快(Velocity)、价值密度低(Value)。
数据规模大(Volume)。现代意义上的“数据”,范畴比信息还要大。进入信息时代,“数据”二字的内涵开始扩大:不仅指代“有根据的数字”,还统指一切保存在电脑中的信息,包括文本、图片、视频等。数据也逐渐成为“数字、文本、图片、视频”等的统称,也即“信息”的代名词。【6】256-257
数据来源广泛、类型多样(Variety)。信息时代,数据的获取途径不仅限于计算,还包括大记录,即人们通过手机、个人电脑、ipad等终端上传到网络的海量数据以及个人存储在手机、个人电脑等终端中的数据。数据的类型也不再局限于原始的计算数据、结构化数据,还包括人们在日常生活中随手记录、保存、上传至网络平台的图片、音频、视频等非结构化数据。
数据获取及处理速度快(Velocity)。数据来源的多样化致使数据日益公开化、社会化,数据获取更为方便、快捷、全面。伴随大数据发展而诞生的数据处理技术使得数据处理速度远远快于传统数据时代,数据处理日益规模化、软件化、智能化。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比,大数据本身的价值密度是相对较低的,需要对海量的数据进行挖掘分析才能得到真正有用的信息,形成用户价值。【5】基于海量数据基础上形成的某一领域或某一特定内容形成的信息,相关性更强、信息更为全面,效果更佳明显,价值高于传统小数据分析得出的结论。
二、依托大数据推动社会主义核心价值观建设的重要性
大数据已经融入到大学生日常生活中,大学生学习、生活、工作无处不体现大数据。一方面,大学生通过互联网获取学习资料、娱乐资讯、工作模板,成为大数据的享用者;另一方面,大学生搜索、下载学习资料留下数据痕迹,在微博等社交网络平台发表状态、上传生活照片以及工作过程中通过网络发布通知、活动内容,成为大数据的贡献者。大数据与大学生息息相关,透过大学生可以了解学生的思想动态,亦可推动社会主义核心价值观建设。
(一)大数据为社会主义核心价值观建设提供良好的环境。
徐子沛在《数据之巅:大数据革命,历史、现实与未来》中提到一个案例:2013年7月,有报道称,华东师范大学的一位女生收到校方的短信:“同学你好,发现你上个月餐饮消费较少,不知是否有经济困难?”这条温暖的短信也要归功于数据挖掘:校方通过挖掘校园饭卡的消费数据,发现其每顿的餐费都偏低,于是发出了关心的询问,但随后发现这是一个美丽的错误——该女生其实是在减肥。【6】275这个案例说明可以通过大数据了解实时了解学生状态,在当前东西方价值观激烈碰撞的环境下,通过分析数据可以了解并掌握学生思想动态,做到早发现、早处理,对于为社会主义核心价值观建设提供良好的环境有极为重要的意义。
(二)大数据为社会主义核心价值观建设提供更为行之有效的方法。
价值观教育并非一成不变、形式单一,目前高校社会主义核心价值观教育方式主要有课堂教学、主题班会、高校讲座、社会实践以及网络自主获取等形式。那么,这些方式哪些是学生更喜闻乐见、接受主动性更强的方式?有没有尚未发掘的、学生潜意识中更易于接受的价值观教育方式?以课堂教学为例,学生是更倾向于教师讲课学生听的形式还是互动教学形式?如果把视频教学纳入到课堂教学中,那么视频内容是什么样的,多长的视频最优化,以何种形式展现,等等,都是值得探讨的问题。问卷调查、抽样调查等方式获取的数据量小、不够全面、不完全具有代表性,且学生填写调查问卷具有自我意识,问卷结果未必是学生真实想法。大数据是通过高校大学生在网络上发布海量资讯中获取,如学生通过QQ、微信、飞信等沟通软件,人人网、新浪微博、大学生在线等网络社交平台以及邮箱、Dropbox等数据共享平台发布的数据。数据更公开、更广泛、更全面、更真实,通过分析得出的结论更具有说服力。通过分析高校大学生思想动态大数据,可以全面、时时了解学生接受价值观教育的趋向性方式。依据不同年级、不同专业、不同高校学生特点,采用不同形式进行价值观教育,真正做到“因材施教”。
(三)大数据有效掌握高校社会主义核心价值观建设动态情况。
社会主义核心价值观建设是一项艰巨的长期工程,其过程具有动态性、延展性,需要提前、时时把握价值观建设状态、发展动态、发展趋势,随时调整价值观建设的方法、形式、重点。基于网络数据的信息挖掘,不需要逐一调查,成本低廉,更重要的是,这种分析是实时的,没有滞后性【6】268。
三、依托大数据推动社会主义核心价值观建设的途径
(一)树立大数据观念
大数据绝不仅仅是科研的高端产品,大数据存在于我们的日常生活中。沃尔玛通过数据挖掘发现顾客潜在意识——父亲在买尿布时往往会顺便买啤酒——捆绑“啤酒和尿布”提高销量;亚马逊通过数据挖掘——分析顾客的购买规律——“预判发货”,即在网购时,顾客还没有下单,亚马逊就将包裹寄出;奈飞公司利用客户的网上点击记录,预测其喜欢观看的内容,实现精准营销。
在高校中,数据和数据分析的价值更是随处可以得到体现,高校思想政治教育工作已经具备了大数据的特征【7】。建设核心价值观,充分发挥大数据的价值,需要高校学生工作者强化大数据意识,提高对数据的敏感意识、前瞻意识,培养数据共享意识、动态意识,数据不是一成不变的,要不断接受新数据、挖掘新信息。根据对数据的分析,个性化推动社会主义核心价值观建设。
(二)建立大数据库
数据是大数据时代社会主义核心价值观建设的基础。建立大数据库的方式有两种:对内,汇总校园内通过高校信息网络中心的数据及学生在各平台发布的信息;对外,搜集政府、社会发布的与核心价值观建设相关的信息。学校电子网络信息、学生交流使用的网络电子平台、校园各单位为方便服务管理而统计保存的各种信息汇总以及校园安全服务网络使用的摄像头、门禁器等产生的信息数据。
(三)培养大数据工作队伍
光有数据没有分析人才,那么数据永远只是一堆数字,没有任何价值。大数据价值密度低的特点要求数据分析者设计能完成特定任务的软件或程序,智能分析海量数据。高校社会主义核心价值观建设工作人员主要以高校学生工作处、思政教师及辅导员为主,需要在这批人员中培养一批思想政治觉悟高、政治理论水平高人员专门从事该项事务,提高他们的大数据意识和大数据处理能力,适应大数据时代社会对大学生数据能力的需求。
❹ 什么是大数据时代
利用相关算法对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活。
大数据无处不在,社会各行各业都可以找到大数据的印记,在金融,餐饮,电信,体育,娱乐等领域都可以感受到大数据对各行各业的影响
1、更多,更乱,但内部有关系可循。
示例:
大约20年前,亚马逊刚成立时,杰夫·贝索斯让50个书评员来为他卖书,他意识到不仅仅可以请人来写书评,还可以用数据技术来提供图书推荐。起初他使用的是小数据,不是大数据,把客户进行分类,比如说有人对中国旅游或者是对园艺感兴趣,系统会自动提供推荐。他的同事告诉他,刚刚开始使用这个数据推荐时,使用体验并不好;在进一步分析后,亚马逊决定不对人进行分类,而是对用户的需求分类。这个做法做法非常成功,以至于到今天,推荐系统为亚马逊带去30%的销售收入。
这就是数据收集和再处理。亚马逊有交易数据,每买一本书就是一个交易,然后对这个数据进行分析。但今天我们已不再满足于交易数据了,转而收集起沟通数据。你看了某一个书评、某一个交流会给商家更多的信息和细节。
2、数据可以被重复使用(数据的产生和收集本身并没有直接产生服务,最具价值的部分在于:当这些数据在收集以后,会被用于不同的目的,数据被重新再次使用)
示例:
比方说这家公司实时车辆交通数据采集商Inrix,该公司目前有1亿个手机端用户。Inrix可以帮助你开车,避开堵车,为司机呈现路的热量图,红的就表面堵车。如果只提供数据,这个产品没什么特色,
但值得一提的是,Inrix并没有用交警的数据,这个软件的每位用户在使用过程中会给服务器发送实时数据,比如走的多快,走到哪里,这样每个客户都是探测器。
每天早上起来想一下,这么多数据我能用来干什么,这些价值在哪里可以找到,能不能找到一个别人以前都没有做过的事情。你的想法和思路,是最重要的资产。
示例:
我们可以通过大数据来确定哪些地方会有火灾。以前防火检查员只有13%的时间可以准备预测,现在他们找到火灾隐患的概率达到了70%,比以前提高了6倍。将效率提高6倍是一个巨大无比的进步,未来的公共服务业可以由此获得更多便利。
❺ 《大数据》读书笔记
《大数据》(徐子沛)
核心观点: 一个真正的信息社会,首先是一个公民社会。
徐子沛和吴军是国内科技界文笔最好的两位大拿,能把复杂的技术发展讲得像故事一样引人入胜。书中讲述了美国信息开放、数据技术创新、数据逐步开放的历史,例举了美国政府如何通过大数据来治国:降低犯罪率、纠正福利滥用、增加财务透明度,并展望了大数据发展的未来,他觉得中国和美国最大的区别就在中国习惯于说“差不多”,不善于用数字管理国家。书中也介绍了大数据中数据仓库、数据挖掘、数据分析、数据可视化等技术的发展,他认为: 数据就是企业的财富和金矿,数据分析和挖掘的能力就是企业的核心竞争力。 阿里网罗了徐子沛和王坚两个大数据和云计算专家,估计在大数据和云计算领域鲜有敌手了。
核心观点: 推崇知识和理性,用数据创新
本书讲述互联网对传统工业 生活的推进,大量数据没有数字化,数据基本都困在一家医院内,电子病历推进也很缓慢,通过数据的流通让患者享受更便捷、更安全的服务基本只限制在思考层,这里面有方方面面的各种利益、法规的原因,这就像书中说的“也许是由于其本身的根深蒂固。作者认为 iPhone、云计算、3D打印、基因测序、无线传感器、超级计算机,这些改变了我们生活的事物,将再一次地融合在一起,对医学进行一次“创造性破坏” ,我觉得新技术的应用比新规则的创立在国内还是相对简单,而也能解决医疗资源不足的痛点,把像IBM沃森这样的智能作为医疗的辅助判断,提升医疗的效率和准确率还是前景明朗的。但要说像书中说的“旧的体系完全不复存在,新的体系随之取代...在这超级融合之下,权力再次交回到我们自己手中,而只有我们自己,。我想这还有很远的路要走,与生命有关的事物,一定是慎之又慎的;与体系有关的事情,改变一定是难上加难的。
所以 崇正说他们阿里都是看数据做事情,不是臆想做事情。因为在这个高速发展的时代,数据都是流动。他们都是落实到行动,分析数据,应用数据,依靠数据。
❻ 什么是大数据技术大数据的概念
大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
随着云时代的来临,大数据也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
(6)徐子大数据的表现是扩展阅读:
大数据的三个层面:
1、理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
2、技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
3、实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
参考资料来源:网络-大数据
❼ 有谁知道大数据指的是什么
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1.随机查询动态报表
2.掌握指标管理
3.随时线上分析处理
4.视觉化之企业仪表版
5.协助预测规划
导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
2.降低整体营运成本(Power the Bottom Line):BIS改善企业的资讯取得能力,大幅降低IT人员撰写程式、Poweruser制作报表的时间与人力成本,而弹性的模组设计介面,完全不需撰写程式的特色也让日后的维护成本大幅降低。
3.协同组织目标与行动(Achieve a Fully Coordinated Organization):BIS加强企业的资讯传播能力,消除资讯需求者与IT人员之间的认知差距,并可让更多人获得更有意义的资讯。全面改善企业之体质,使组织内的每个人目标一致、齐心协力。
商业智能领域的技术应用
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管理
6.生产管理
7.销售管理
8.行销管理
商业智能实施步骤
商业智能系统处理流程[1]
商业智能(BI)作为一个概念,描述与业务紧密结合,并且根据需要进行相关特性展示和数据处理的过程。
为了让数据“活”起来,往往需要利用数据仓库、数据挖掘、报表设计与展示、联机在线分析(OLAP)等技术。数据或者数据源包含的种类繁多,例如存储在关系型数据库中的,在外围数据文件中的,在业务流中实时产生存储在内存中的等等。而商业智能最终能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。
这些分析有财务管理、点击流分析(Clickstream)、供应链管理、关键绩效指标(Key Performance Indicators, KPI)、客户分析等。商业智能关注的是,从各种渠道(软件,系统,人,等等)发掘可执行的战略信息。商业智能用的工具有抽取(Extraction)、转换(Transformation)和加载(Load)软件(搜集数据,建立标准的数据结构,然后把这些数据存在另外的数据库中)、数据挖掘和在线分析(Online Analytical Processing,允许用户容易地从多个角度选取和察看数据)等 。
商业智能系统的功能
商业智能系统应具有的主要功能:
数据仓库:高效的数据存储和访问方式。提供结构化和非结构化的数据存储,容量大,运行稳定,维护成本低,支持元数据管理,支持多种结构,例如中心式数据仓库,分布式数据仓库等。存储介质能够支持近线式和二级存储器。能够很好的支持现阶段容灾和备份方案。
数据ETL:数据ETL支持多平台、多数据存储格式(多数据源,多格式数据文件,多维数据库等)的数据组织,要求能自动化根据描述或者规则进行数据查找和理解。减少海量、复杂数据与全局决策数据之间的差距。帮助形成支撑决策要求的参考内容。
数据统计输出(报表):报表能快速的完成数据统计的设计和展示,其中包括了统计数据表样式和统计图展示,可以很好的输出给其他应用程序或者Html形式表现和保存。对于自定义设计部分要提供简单易用的设计方案,支持灵活的数据填报和针对非技术人员设计的解决方案。能自动化完成输出内容的发布。
分析功能:可以通过业务规则形成分析内容,并且展示样式丰富,具有一定的交互要求,例如预警或者趋势分析等。要支持多维度的联机在线分析(OLAP分析),实现维度变化、旋转、数据切片和数据钻取等。帮助决策做出正确的判断。
典型的商业智能系统
典型的商业智能系统有:
客户分析系统、菜篮分析系统、反洗钱系统、反诈骗系统、客户联络分析系统、市场细分系统、信用计分系统、产品收益系统、库存运作系统以及与商业风险相关的应用系统等。
[编辑]商业智能解决方案厂商
提供商业智能解决方案的著名IT厂商包括微软、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最后,希望你关注一下FineBI,帆软软件的大数据解决方案,我看了,还是很不错的