❶ oracle大数据表一定要建分区吗
oracle给出的建议是抄按照表的大小给出的,我记得10g的建议是2G,也就是说表的大小大于2G,那么就最好建立分区。
为什么要建立分区?主要是为了查询方便,因为如果一个表每天都有百万条记录,那么即使建立了索引,那么你要查的话,也不会很快的。
如果你建立了分区,每次查询一个分区,也就是这张表的几分之一,甚至几十分之一,那么不管怎么计算都比你查询整张表的消耗要少。而且在分区上也能建立索引的。
分区的建立最好一个原则,就是查询,这个要具体问题具体分析,有些分区的方式虽然条数不错,不过每次查询要跨越2-3个分区,这样的分区其实个人认为比较失败的。最好把最常用的查询限定在一个分区内,而且分区的条数不能过少(这个没有具体的要求,一般oracle是按照大小建议的,我忘了是多少了,还是那句话,看你的需求)
不过按照你的问题,大数据表(数据量很大的那种),最好建立分区,这样查起来方便,节省资源和时间。
❷ 大数据量的表如何做分区
推荐你使用观想报表,可以快速的制作多终端显示的数据可视化,尤其是大屏显示,观专向报表系统里属面有非常的多图表样式,除了大屏显示,还可以移动端、pc端、大屏等多终端显示,制作图表就像在线ps一样,根据需求对接多种数据库或者本地数据(Excel),快速选择图表样式,调节出自己喜欢的风格(例如蓝色科技感)。注:完全不需要敲代码。而且可以本地部署,可以去试用一下。
❸ 大数据存储的三种方式
不断加密,仓库存储,备份服务-云端。
不断加密,随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。将所有内容转换为代码,使慧卜卖用加密信息,弊渗只有收件人可以解码。如果没有其他的要求,前逗则加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。
仓库储存,大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。
备份服务-云端,云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。最终,如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。
❹ 怎样存储大数据
用一块2TB硬盘存储大量文件、数据。
❺ 怎样存储大数据
PB或多PB级基础设施与传统大规模数据集之间的差别简直就像白天和黑夜的差别,就像在笔记本电脑上处理数据和在RAID阵列上处理数据之间的差别。"
当Day在2009年加入Shutterfly时,存储已经成为该公司最大的开支,并且以飞快的速度增长。
"每N个PB的额外存储意味着我们需要另一个存储管理员来支持物理和逻辑基础设施,"Day表示,"面对大规模数据存储,系统会更频繁地出问题,任何管理超大存储的人经常都要处理硬件故障。大家都在试图解决的根本问题是:当你知道存储的一部分将在一段时间内出现问题,你应该如何确保数据可用性,同时确保不会降低性能?"RAID问题解决故障的标准答案是复制,通常以RAID阵列的形式。但Day表示,面对庞大规模的数据时,RAID解决问题的同时可能会制造更多问题。在传统RAID数据存储方案中,每个数据的副本都被镜像和存储在阵列的不同磁盘中,以确保完整性和可用性。但这意味着每个被镜像和存储的数据将需要其本身五倍以上的存储空间。随着RAID阵列中使用的磁盘越来越大(从密度和功耗的角度来看,3TB磁盘非常具有吸引力),更换故障驱动器的时间也将变得越来越长。
"实际上,我们使用RAID并不存在任何操作问题,"Day表示,"我们看到的是,随着磁盘变得越来越大,当任何组件发生故障时,我们回到一个完全冗余的系统的时间增加。生成校验是与数据集的大小成正比的。当我们开始使用1TB和2TB的磁盘时,回到完全冗余系统的时间变得很长。可以说,这种趋势并没有朝着正确的方向发展。"
对于Shutterfly而言,可靠性和可用性是非常关键的因素,这也是企业级存储的要求。Day表示,其快速膨胀的存储成本使商品系统变得更具吸引力。当Day及其团队在研究潜在技术解决方案以帮助控制存储成本时,他们对于一项叫做纠删码(erasure code)的技术非常感兴趣。
采用擦除代码技术的下一代存储
里德-所罗门纠删码最初作为前向纠错码(Forward Error Correction, FEC)用于不可靠通道的数据传输,例如外层空间探测的数据传输。这项技术还被用于CD和DVD来处理光盘上的故障,例如灰尘和划痕。一些存储供应商已经开始将纠删码纳入他们的解决方案中。使用纠删码,数据可以被分解成几块,单块分解数据是无用的,然后它们被分散到不同磁盘驱动器或者服务器。在任何使用,这些数据都可以完全重组,即使有些数据块因为磁盘故障已经丢失。换句话说,你不需要创建多个数据副本,单个数据就可以确保数据的完整性和可用性。
基于纠删码的解决方案的早期供应商之一是Cleversafe公司,他们添加了位置信息来创建其所谓的分散编码,让用户可以在不同位置(例如多个数据中心)存储数据块或者说数据片。
每个数据块就其自身而言是无用的,这样能够确保隐私性和安全性。因为信息分散技术使用单一数据来确保数据完整性和可用性,而不是像RAID一样使用多个副本,公司可以节省多达90%的存储成本。
"当你将试图重组数据时,你并不一定需要提供所有数据块,"Cleversafe公司产品策略、市场营销和客户解决方案副总裁Russ Kennedy表示,"你生成的数据块的数量,我们称之为宽度,我们将重组数据需要的最低数量称之为门槛。你生成的数据块的数量和重组需要的数量之间的差异决定了其可靠性。同时,即使你丢失节点和驱动器,你仍然能够得到原来形式的数据。"
❻ oracle大数据存储方法,希望大家出点思路(图像)
1、你的图像数据是指什么?二进制的图片?
2、存储在数据库中用的是什么方式?BLOB还是内BFILE?
3、分多表,是容怎么分的,按照业务分的?
你的这么多数据也不都是在线数据吧。
太多不确定,下面提出一点建议吧。
觉得如果现有存取速度可以满足需求的话,使用分区表就行了,按照时间分区,并且过期的数据采取压缩或者离线备份处理。
个人觉得你可以使用其他的方式存放图片文件,将源数据(path等)存放在oracle数据库里面。
❼ 利用MySQL数据库如何解决大数据量存储问题
mysql解决大数据量存储问题的方法是分表。
1.如何去分表
根据什么策略把现有表中的数据分到多个表中,并且还有考虑到以后的扩展性上。
建立一张索引表,用户id与数据库id对应,(这里他将相同结构的表分在了不同的数据库中进一步减少压力,但同时对于数据的同步也需要通过其他手段来解决),其本质也是分表了同时分库了。这么做的好处是便于以后的扩展,但损耗一点性能,因为会多一次查询。这样索引表可能会成为新的瓶颈,除非用户不会一直增长哈。
我的做法属于另一种,写了个算法通过计算某列值,按照一定规律将数据大致均分在每个分表中。至于扩展性,写算法时候考虑进去了以后增加分表数的问题了。
选择哪种策略,是要看自己的表的业务特点了,方法没有绝对的优缺,还是要根据自己的需求选取。
2.分表之后主键的维护
分表之前,主键就是自动递增的bigint型。所以主键的格式已经提早被确定了,像什么uuid之类的就被直接pass掉了。
还有想过自己写一个主键生成程序,利用Java 的Atomic原子量特性,但是考虑还需要增加工作量并且高并发下,这里很可能是个隐患。
还有就是通过应用层上管理主键,如redis中有原子性的递增。