导航:首页 > 网络数据 > 2014中国大数据技术与产业白皮书下载

2014中国大数据技术与产业白皮书下载

发布时间:2023-07-08 21:29:03

㈠ 你要的大数据标准都在这里

NIST 1500-4 大数据通用框架草案 第四卷 安全与隐私.pdf

NIST 大数据定义(草案).pdf

大数据安全标准化白皮书2017 .pdf

大数据安全标准化白皮书(2018版).pdf

大数据标准化白皮书(2018).pdf

大数据标准化白皮书(2020版).pdf

1 基础

GB T 35295-2017 信息技术 大数据 术语.pdf

GB T 35589-2017 信息技术 大数据 技术参考模型》.pdf

GB T 38672-2020 信息技术 大数据 接口基本要求.txt

JRT 0236—2021《金融大数据 术语》.pdf.pdf

TGZBD 2-2020 大数据标准体系总体架构.pdf

2 数据

GBT 18142-2017 信息技术 数据元素值表示 格式记法 ISOIE C FDIS 149572009.txt

GBT 18391.1-2009 信息技术 元数据注册系统 (MDR) 第1部分: 框架 ISOIEC11179-1 2004, IDT.txt

GBT 18391.2-2009 信息技术 元数据注册系统 (MDR) 第2部分: 分类 ISOIEC11179-2 2005, IDT.txt

GBT 18391.3-2009 信息技术 元数据注册系统 (MDR) 第3部分: 注册系统 元模型与基本属性 ISOIEC11179-3 2003, IDT.txt

GBT 18391.4-2009 信息技术 元数据注册系统 (MDR) 第4部分: 数据定义 的形成 ISOIEC11179-4 2004, IDT.txt

GBT 18391.5-2009 信息技术 元数据注册系统 (MDR) 第5部分: 命名和标 识原则 ISOIEC11179-5 2005, IDT.txt

GBT 18391.6-2009 信息技术 元数据注册系统 (MDR) 第6部分: 注册 ISOIEC11179-6 2005, IDT.txt

GBT 23824.1-2009 信息技术 实现元数据注册 系统内容一致性的规程 第 1部分: 数据元 ISOIEC TR20943-1 2003, IDT.txt

GBT 23824.3-2009 信息技术 实现元数据注册 系统内容一致性的规程 第 3部分: 值域 ISOIEC TR20943-3 2004, IDT.txt

GBT 30881-2014 信息技术 元数据注册系统 (MDR)模块 ISOIEC 197732011.txt

GBT 32392.1-2015 信息技术 互操作性元模型 框架(MFI) 第1部分: 参考 模型.txt

GBT 32392.2-2015 信息技术 互操作性元模型 框架(MFI) 第2部分: 核心 模型.txt

GBT 32392.3-2015 信息技术 互操作性元模型 框架(MFI) 第3部分: 本体 注册元模型.txt

GBT 32392.4-2015 信息技术 互操作性元模型 框架(MFI) 第4部分: 模型 映射元模型.txt

GBT 32392.5-2018 信息技术 互操作性元模型 框架(MFI) 第5部分: 过程 模型注册元模型.txt

GBT 32392.7-2018 信息技术 互操作性元模型 框架 第7部分: 服务模型注.txt

GBT 32392.8-2018 信息技术 互操作性元模型 框架 第8部分: 角色与目标 模型注册元模型.txt

GBT 32392.9-2018 信息技术 互操作性元模型 框架 第9部分: 按需模型选 择.txt

GBZ 21025-2007 XML使用指南.txt

3 技术

YDT 3772-2020 大数据 时序数据库技术要求与测试方法.txt

YDT 3773-2020 大数据 分布式批处理平台技术要求与测试方法.txt

YDT 3774-2020 大数据 分布式分析型数据库技术要求与测试方法.txt

YDT 3775-2020 大数据 分布式事务数据库技术要求与测试方法.txt

大数据开放与互操作技术

信息技术 大数据 互操作 技术指南 拟研制.txt

大数据生存周期处理技术

GBT 32908-2016 非结构化数据访问接口规范.txt

GBT 36345-2018 信息技术 通用数据导入接 口规范.txt

信息技术 大数据 面向分 析的数据检索与存储技术 要求 在研.txt

大数据集描述

GBT 32909-2016 非结构化数据表示规范.txt

GBT 34945-2017 信息技术 数据溯源描述模型.txt

GBT 34952-2017 多媒体数据语义描述要求.txt

GBT 35294-2017 信息技术 科学数据引用.txt

GBT 38667-2020 信息技术 大数据 数据分 类指南.txt

GB T 38667-2020 信息技术 大数据 数据分类指南.pdf

4 平台、工具

GBT 38673-2020 信息技术 大数据 大数据 系统基本要求.txt

GBT 38675-2020 信息技术 大数据 计算系 统通用要求.txt

GB T 37721-2019 信息技术 大数据分析系统功能要求》.pdf

GB T 37722-2019 信息技术 大数据存储与处理系统功能要求.pdf

GB T 38633-2020 信息技术 大数据 系统运维和管理功能要求.pdf

GB T 38643-2020 信息技术 大数据 分析系统功能测试要求.pdf

GB T 38676-2020 信息技术大数据存储与处理系统功能测试要求.pdf

JRT 0206—2021 证券期货业大数据平台性能测试指引.pdf

YDT 3762-2020 大数据 数据挖掘平台技术要求与测试方法.txt

5 安全和隐私

GAT 1718-2020《信息安全技术 大数据平台安全管理产品安全技术要求》.txt

GBT 大数据系统软件安全防护指南》标准草案.pdf

GB T 35274-2017 信息安全技术 大数据服务安全能力要求 立项.pdf

GB T 37973-2019 信息安全技术 大数据安全管理指南.pdf

YDT 3736-2020 电信运营商大数据安全风险及需求.txt

YDT 3741-2020 互联网新技术新业务安全评估要求 大数据技术应用与服务.txt

YDT 3800-2020 电信网和互联网大数据平台安全防护要求.txt

信息安全技术电信领域大数据安全防护实现指南.doc

d

㈡ 大数据未来的发展前景怎么样

数据的资源化
何为资源化,是指大数据成为企业和社会重视的重要战略资源,并已成为我们争相抢夺的新焦点。因此,企业必需要提前制定大数据营销战略计划,抢占市场先机。
与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓宽的根底设备,是产生大数据的渠道之一。自2013年开端,大数据技能已开端和云计算技能紧密结合,估计未来两者联系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革新,让大数据营销发挥出更大的影响力。
科学理论的打破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技能革新。随之兴起的数据发掘、机器学习和人工智能等相关技能,可能会改变数据世界里的许多算法和根底理论,实现科学技能上的打破。
数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个根底渠道,也将建立起跨领域的数据同享渠道,之后,数据同享将扩展到企业层面,而且成为未来产业的中心一环。
数据走漏泛滥
未来几年数据走漏事件的增长率或许会到达100%,除非数据在其源头就可以得到安全保障。可以说,在未来,每个财富500强企业都会面临数据进犯,不管他们是否现已做好安全防范。而一切企业,不管规划大小,都需要从头审视今日的安全界说。

㈢ 大数据未来的发展前景怎么样

2015年左右,大数据相关政策规划密集出台,同期为大数据企业新增数量顶峰时期。近年来,我国大数据产业迎来新的发展机遇期,产业规模日趋成熟。大数据产业主体从“硬”设施向“软”服务转变的态势将更加明显,面向金融、政务、电信、医疗等领域的大数据服务将实现倍增创新。

大数据企业数量持续增长,增速与政策出台密切相关

根据IT桔子统计,大数据企业的快速增长阶段出现在2013-2015年,增长速度在2015年达到最高峰。2015年后,市场日趋成熟,企业新增开始趋于放缓,大数据产业逐渐走向成熟。

—— 更多数据及分析请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

㈣ 请问大数据在未来会有怎样的趋势

大数抄据肯定是未来的趋势袭,复杂的分析也是根据业务的发展越来越重要,越来越多。hadoop作为开源的大数据分析工具会有很多的应用。

大数据的实时性会变得越来越重要,实时性的大数据分析工具也会起来,storm,spark等,一些国内的厂商GBase,Yonghong Z-Data Mart等都是值得期待的。

㈤ 大数据未来的前景怎么样

大数据的未来发展前景是值得肯定的,但是现在大数据人才出现了供不应求的情况。大数据行业就业市场较为活跃的地区主要集中在京津冀、长三角、珠三角、成渝等区域,但是从目前招聘数据来看,大数据人才还是不能满足市场的需求,因此现在学大数据未来的发展前景是非常好的。
大数据作为一门基础科学,无论在数据开发及分析还是在物联网和人工智能算法训练领域,都有着强大的需求。随着数据规模不断增大,企业需求持续增长,大数据人才成了刚性需求。
大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,因为未来大数据人才就业面很广,就业机会很多,发展前景也是非常好的。

2大数据工程师的薪资待遇
大数据工程师职业发展路径分为5个阶段,每个阶段对应职位对应的薪资待遇是不一样的:

有一年工作经验的实习工程师月工资在6000以上;

有1-2年工作经验的助理工程师,月收入在13000-15000左右;

有3年左右工作经验的大数据工程师,平均每个月能赚到20000左右;

有5年左右工作经验的高级大数据工程师,月收入一般都在30000左右;

有10年以上工作经验的首席工程师,月薪都是大于50000的。

㈥ 什么是大数据,大数据时代有哪些趋势

行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等

本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等

产业概况

1、定义:大数据产业覆盖范围广

根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:

2、产业链剖析:大数据产业链庞大

大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;

大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;

大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。

大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。

中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。

在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。

产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

产业政策背景:优化升级数字基础设施,鼓励大数据产业发展

2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。

当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。

产业发展现状

1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域

——大数据产业规模:2021年超过800亿元

近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。

——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主

从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,

CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。

从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。

CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。

2、细分市场一:金融大数据

——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升

从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。

近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。

——金融大数据应用场景

过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。

3、细分市场二:政府大数据

——政府大数据需求:互联网政务服务用户规模不断提升

从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。

——政府大数据应用场景

中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。

4、细分市场三:互联网大数据

——互联网大数据需求:互联网行业规模不断提升

在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。

2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。

注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。

——互联网大数据应用场景

在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。

产业竞争格局

1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区

根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。

2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐

根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。

大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。

政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。

注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。

产业发展前景:大数据将继续保持高速增长

大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。

更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

㈦ 大数据 掌握话语权要关注基础技术

大数据:掌握话语权要关注基础技术

《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将是2014年规模的10倍,由2014年的767亿元扩大至8228.81亿元。全球大数据市场高速增长,已经成为全球IT领域中的增长亮点。在中国尽管大数据仍处于起步阶段,但各地发展大数据的积极性较高,行业应用推广迅速。在这个热情高涨的大数据市场,中国要想进一步释放大数据的价值,掌控大数据的技术话语权,必须关注大数据的基础技术。

眼下,虽然中国对大数据的热情很高,但我们必须看到目前中国在大数据关键技术上的布局其实是有所欠缺的。目前世界各国都在抢先布局大数据的关键技术、基础技术,因为从目前的技术架构和技术基础来看,用现成的技术来解决大数据的问题还面临诸多的挑战。不久前,IBM中国研究院院长沈晓卫接受《中国电子报》记者采访时坦言,我们要想真正从数据中获得洞察、获得价值,需要更高效、更智能的数据处理和分析平台,以及相应的工具。其一,传统的IT技术,需要有更大的突破。比如物联网处理系统需要一秒钟处理上百万信息,比如对非结构化的数据进行存储和处理,需要新的技术。其二,需要引入物理模型来模拟物理世界。比如对天气的理解,比如对疾病的风险控制的理解,比如对智能工厂的理解,都需要构建大量的物理模型,并挑出更合适的模型,对物理世界作出更好的模拟和理解。其三,需要更强大的认知计算,要求认知计算有更强大的自然语言的能力、更强的机器学习能力等。

基于对市场需求和技术趋势的判断,事实上国外IT巨头在大数据的关键技术上投入了大量人力、物力和财力来进行关于大数据关键技术的研发。我们大家都知道现在谈及大数据的利用,一定都会提及开源的Hadoop技术,事实上对于大数据的利用仅仅依靠Hadoop是不够的。我们朝向产业互联网推进时面临非常多的挑战,我们的计算架构、计算模式也面临很大挑战。比如传统的计算机分析和数据整理方式,首先是收集数据,然后储存在数据库程序中,然后在收到请求后搜索这些数据。这是一个高效的处理方式,但却是一个紧绷的结构,而且通常会造成时间的浪费。而在流计算当中,高级软件的运算法则在接收流数据时就开始对其进行分析。流计算在实时数据分析领域具有巨大的应用空间,包括天气、江河、电力、股票交易等等。但目前,中国的IT产业在流计算方面并没有太多的话语权。面对大数据的挑战,有非常多类似流计算的新技术,关键技术都需要中国IT企业做更多的布局,只有这样,我们的大数据发展,大数据利用才不会变成“无根”的产业。

事实上不仅仅是在平台和工具等基础技术维度,中国要想在大数据领域拥有更大的话语权,更好地释放数据的价值,还必须在数据模型的维度、在数据科学家等维度进行大量的投入。目前全球前1500强的企业都有自己的数据科学家。据国外职业人士社交网站LinkedIn公布的2014年最受雇主喜欢、最炙手可热的25项技能,统计分析和数据挖掘技能位列榜首。研究机构Gartner预测,2015年,全球将新增440万个与大数据相关的工作岗位,25%的组织将设立首席数据官职位。

不久前,阿里云宣布启动阿里云大学合作计划AUCP,联合国内8所高校开设云计算与数据科学专业方向,目标是到大学里培养大数据的科学家。应该说阿里巴巴是国内企业中“大数据意识”觉醒比较早的企业。对于大数据这样的应用学科的人才培养,需要充分借助企业的资源。在国外企业中,IBM对于全球大数据的人才培养投入了巨大资源,已与全球1000多所大学一同合作,构建一个输送数据科学家的“通道”。

推进大数据应用需要大量的数据科学家,需要教育体系更重视大数据的人才培养,需要更多的领先企业参与进来,仅仅有阿里巴巴或者是IBM是远远不够的。

以上是小编为大家分享的关于大数据 掌握话语权要关注基础技术的相关内容,更多信息可以关注环球青藤分享更多干货

㈧ 我国的大数据发展现状如何

我国大数据产业开始已进入深化阶段

中国大数据产业从萌芽到如今渐成体系,已走过将近10个年头。“十四五”开局之年,大数据产业也进入了集成创新、深度应用的新阶段。大数据在医疗、工业、交通等领域的融合应用技术加快创新突破,大数据融合应用重点从虚拟经济转变为实体经济;大数据底层技术方面,信息安全、模式识别、语言工程、计算机辅助设计、高性能计算等加快突破,大数据技术领域逐渐补齐短板,并进一步强化长板。

—— 更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》

㈨ 中国大数据产业和企业的问题观察

中国大数据产业和企业的问题观察

大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰。大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。大多数企业客户,对数据商业应用敏感度低
大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。

以上是小编为大家分享的关于中国大数据产业和企业的问题观察的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与2014中国大数据技术与产业白皮书下载相关的资料

热点内容
通达信标记存在哪些文件夹 浏览:647
美国苹果商店ipad 浏览:961
iphone备忘录提示音 浏览:801
苹果5s电信网络设置 浏览:31
win10系统中文版吗 浏览:971
公司采购一般公布在哪些网站 浏览:70
如何连接车上的无线网络 浏览:170
mate7升级emui31 浏览:714
tomcat7forlinux下载 浏览:437
在根里查找文件linux 浏览:819
饥荒安卓人物mod 浏览:91
如何看地灾监测预警数据变化 浏览:864
pdf文件反了怎么转回去 浏览:767
angularjs封装service 浏览:42
亚马逊js工具 浏览:641
qq动态生肖蛋糕图片 浏览:962
cad文件怎么存到u盘 浏览:916
iphone6芯片型号查询 浏览:493
语音加载的文件在哪里 浏览:928
无人机编程是什么意思啊 浏览:539

友情链接