导航:首页 > 网络数据 > 如何利用大数据进行科研

如何利用大数据进行科研

发布时间:2023-07-06 23:43:38

A. 如何进行大数据分析及处理

提取有用信息和形成结论。

用适当的统计、分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

(1)如何利用大数据进行科研扩展阅读:

大数据分析及处理的相关要求规定:

1、以数据流引领技术流、物质流、资金流、人才流,将深刻影响社会分工协作的组织模式,促进生产组织方式的集约和创新。

2、大数据推动社会生产要素的网络化共享、集约化整合、协作化开发和高效化利用,改变了传统的生产方式和经济运行机制,可显著提升经济运行水平和效率。

3、大数据持续激发商业模式创新,不断催生新业态,已成为互联网等新兴领域促进业务创新增值、提升企业核心价值的重要驱动力。大数据产业正在成为新的经济增长点,将对未来信息产业格局产生重要影响。

B. 结合个人专业,借助网络,正确回答什么科研

如何有效利用互联网进行科研活动一直是一项重要技能,以下总结一下我发现的主要方法

1.微信公众号,微信具有庞大的用户群体,很多知名学者会建立自己的公众号进行科研交流活动,但是通常要耐心寻找辨别

2.博客,关注个人博客或个人网站,或者关注researchgate上的学者,但是通常这些网站比较零散,收藏不方便

3.Twitter,适合关注一些大的科技公司和科技工作者,他们会分享一些热点链接,然后可以进一步深度研究,微博、tumblr、Reddit和TG娱乐性质多点。FB群组可以看下,onedrive好像有很多资源。

4.YouTube,很多视频做得很好,不论是科技公司的还是专业博主的,某些咨询公司,智库公司一些报告不错,但是很难找

5.telegram,关注一些类似于GD分享的群组,有很多学习资料,但是不要随意传播

6.知乎,学生群体多,一些海外博士的专栏值得看看,很多我不熟悉的领域在淘宝和亚马逊都能做简单了解

7.一些专业论坛或科技自媒体网站,比如汽车类的车云网,网站本身不一定会找到学习资源,但会指明学习方向

8.Google,bing,yandex,这类网站通常适合寻找书籍文档,Tor网站好像也行,比较慢

9.BT或类似于IPV6的资源共享网站,适合寻找软件,教学视频等内容,像重要文件可以保存到mega上

10.官网,如果想学习某项技能,官网是最专业的,其次是大学的著名实验室,大牛的那种,计算机偏多

11.在线教育网站,MOOC,学堂在线,网易课堂,优达学城,TED,Coursera,或者国外一些大学的免费公开课,有专业也有不专业的,微盘,网络学术,道客,CSDN偶尔也能找点资料,不过很旧,

12.很多学习资源来源于国外,需要VPN,学习科研的同时不要发表任何政治言论,也不要浏览不健康的新闻。

打开CSDN,阅读体验更佳

利用互联网进行研究性学习
全世界的人们在互联网上就无数论题提供了海量信息。在互联网上,用户可以访问到大量信息:大量的信息资源,电子邮件,文件传输,兴趣小组成员,交互式协作,多媒体展示等等。互联上包含多种连接协议。这些协议包括e-mail, FTP, HTTP, Telnet和 Usenet新闻。 多数协议都有配套的支持程序,可让用户搜索和存取信息资源。
How to improve the work process in the Internet R&D team
How to improve the work process in the Internet R&D team
继续访问
互联网技术如何才能成为科研助力器
科学技术是第一生产力,而科技成果的转化和产业化,是科技发挥其力量的关键环节。然而,从总体来看,我国的科技成果转化情况并不乐观,根据中国科协出版的《2014-2015年度学科发展报告显示,全国5100多所大专院校和科研院所,每年平均完成的科研成果有3万项,但仅有20%可进行转化并批量生产,形成产业规模的则仅有5%,转化率远低于发达国家。 科技成果的低转化率已成为制约我国科技发展的重要因素,众多科研成...
继续访问
我们都在如何使用互联网?
1月17日CNNIC发布了第21次中国互联网报告。据报告所称,截止2007年12月31日,我国内地网民达到2.1亿,半年新增4800万。宽带网民数1.63亿人,手机网民数达到5040万人,目前中国网民仅以500万人之差次于美国,居世界第二。真的是慨叹中国的互联网发展速度好快。的确,互联网自诞生以来,逐步地在改变我们的生活,甚至感觉都有点离不开互联网了。整理整理,看看自己都在用互联网干什么?
继续访问
通过翻转学习有效利用数字资源进行本科技术教育以提高绩效-研究论文
根据小时的需要修改内容质量,并根据各种定性和定量判断参数进行反馈。 成绩的提高体现在一些特定的课程中,通过大学整体评分和交流能力的丰富,而表现在以数学为基础的工程科学论文中则有所下降。 结果是统计计算...
《互联网信息资源检索与利用》读书笔记
链接(Link): 链接是Web网页的元素,是指向其他信息资源的指针,把Web页绑在一起。跟随链接可以从一个文档跳到另一个相关文档。 用户组信息资源: 由一组对某一特点事物或主题有共同兴趣的网络用户组成的邮件群或电子论坛。是一种有组织的电子邮件系统,用户在其间通过电子邮件进行一对多的交流 信息组织: 答:信息组织就是把数据按照一定的结构、顺序、排列方式组织起来,或者说是按照信息查询的需要,对数据根据其特征进行组织。 词典 词典是根据一定编撰目的汇集的词语,并加以描述,说明,通常按字顺排列,是人们查找词语信息
继续访问
能源互联网关键技术分析
能源互联网是解决未来可再生能源大规模有效利用的重要基础设施, 围绕着这一新型电力网络的设计、实现、运行和管理中所面临的新问题, 提出了实现能源互联网的六大关键技术: 先进储能技术、固态变压器技术、智能能量...
借助终端软件,有效统一移动互联网和物联网
喜新厌旧是人类的原始本性之一,对一件东西,或者事物,熟悉了之后,总想尝试一下另外同类的东西,哪怕另外的东西并不比现在使用的东西更好。我也一样,在用了几年的iPhone手机之后,特别希望尝试一下Android操作系统的手机,特别是大屏手机。最近对一款大屏手机感兴趣,于是就下定决心更换。显然,这种情况下必须保留原来的手机号码,毕竟用了这么多年了,很多朋友和亲戚都知道,换号的成本是巨大的。但这就面临一个
继续访问
论文研究 - “互联网+”背景下中小学数学教科书使用策略
中小学数学教科书在基础教育中发挥着重要作用,其功能和价值的实现取决于师生的科学和有效利用。 因此,提出了一些策略:理解数学教科书的意图,探索数学教科书的教育和教学价值,掌握数学教科书的整体性,创造性地...
互联网金融
互联网金融概述第一章 互联网金融概述互联网金融的定义互联网金融的业务模式互联网金融的主要特征互联网金融的产生和发展互联网金融对传统金融的影响第二章 互联网金融原理微观层面金融功能理论与互联网金融金融创新理论和互联网金融支付理论与互联网金融中观层面互联网金融的产业组织理论基础互联网金融的产业组织分析互联网金融的资源配置特点宏观层面互联网金融与经济发展互联网金融与收入分配互联网金融与货币政策第三章 ...
继续访问

最新发布 2022年工业互联网厂商全景地图
最新统计显示,一季度,我国规模以上工业增加值同比增长6.5%,工业互联网产业规模超过万亿元大关。一季度,国家公布了123个工业互联网试点示范项目和4个产业示范基地,打造了车间级、企业级、集群级数字化转型的新标杆。国家工业互联网大数据中心等75个项目建成投入运行,全国“5G+工业互联网”在建项目总数达到了2400个。实施中小企业数字化促进工程,到年底将组织100家以上工业互联网平台为10万家以上中小企业提供数字化转型服务,推动10万家中小企业业务上“云”。
继续访问

大数据时代,企业如何进行有效的信息资源整合?
数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本。近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战。Hadoop等大数据技术和其他大数据工具和设备的出现以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效、可扩展的低成本解决方案,弥补了传统...
继续访问
能源互联网概述
能源互联网一、能源互联网基本概念二、能源互联网研究背景和意义2.1 能源互联网的研究背景2.2 能源互联网的研究意义2.3 能源互联网的发展目标2.4 能源互联网的理念三、能源互联网的形态3.1 物理基础: 多能协同能源网络3.2 实现手段: 信息物理能源系统3.3 价值实现: 创新模式能源运营四、能源互联网背景下广义协调优化运营模式4.1 能源互联网广义“源-网-荷-储”协调优化运营模式基本架构4.2 能源互联网广义“源-网-荷-储”协调优化运营模式的基本方法五、能源互联网“源-网-荷-储”协调优化关键技
继续访问

2019,新互联网与腾讯的ToB转型
  进入2017年和2018年,关于“互联网下半场”的说法逐渐流行起来。究竟是哪个互联网大佬最先提出“互联网下半场”的说法,难以追寻。普遍认为是美团CEO王兴最早于2016年中,在一次内部会议上提出了“互联网下半场”的说法,他提出从互联网到“互联网+”,意味着一个时代的结束和另一个时代的到来。而“互联网+”最早可追溯到易观国际董事长兼CEO于扬于2012年11月第五届移动博览会上的发言,马化...
继续访问
在区块链上进行科学研究和数据共享:理念与举措
区块链是一项革命性技术。从其对不同行业和部门的潜在影响来看,这种状况恰好与互联网发展初期的情况极为类似。全球技术公司Digital Science去年年底发表了一份报告“Blockchain for Research”(科学研究中的区块链),对区块链支持下的学术交流新范式进行了展望。本文的认识主要来自这份报告。该报告认为:区块链技术有望解决目前学术研究和学术交流中所面临的一些最突出的瓶颈问题,包括...
继续访问
信息技术是伴随着计算机技术和互联网技术,摘要:随着科学技术的日新月异以及互联网经济的快速发展,计算机信息技术已经被广泛应用在各行业中,有效促进了社会的长远发展【遵化高级中学信息技术主题社区吧】_网络贴...
该楼层疑似违规已被系统折叠隐藏此楼查看此楼摘要:随着科学技术的日新月异以及互联网经济的快速发展,计算机信息技术已经被广泛应用在各行业中,有效促进了社会的长远发展。就目前而言,由于时代的发展以及社会的进步,传统的信息传递方式已经难以满足社会的需求,这在一定程度上推动了互联网信息技术的发展,进一步扩大了计算机信息技术的使用范围。本文就对互联网计算机信息技术的有效运用进行深入分析和探讨。关键词:互联网...
继续访问
新一代信息技术与互联网的资源观!
新一代信息技术不单是芯片技术、通信网络技术、数据挖掘、人工智能、虚拟现实等单一信息技术自身的纵向升级,还是信息技术与产业融合后推动的信息技术服务平台的整体代际变迁。信息技术发展可分为三个阶段:第一阶段以上世纪80年代开始广泛使用的大型机、中型机、小型机和简易终端为标志,可称为第一代信息技术平台;上世纪80年代中期到本世纪初,随着个人计算机和通过网络连接的分散式服务器的普及,标志着第二代信息技术服务...
继续访问
从脑科学的角度分析物联网、 云计算、 大数据和互联网的关系
本文在互联网虚拟大脑结构图的基础上,分析了互联网与物联网,云计算和大数据的关系,标识出物联网,云计算,大数据和传统互联网在互联网虚拟大脑结构图的位置。说明基于神经学建立的互联网虚拟大脑架构可以有效的统一互联网发展过程中产生的新应用和新概念。
继续访问
数据库课程设计
c语言文件读写操作代码
html+css+js网页设计

C. 大数据在医学领域有什么应用

1、健康监测


大数据技术可以提供居民的健康档案,包括全部诊疗信息、体检信息,这些信息可以为患病居民提供更有针对性的治疗方案。并且通过智能手表等可穿戴设备,随时带着,可以实时汇报病人的健康情况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。


2、数据电子化管理


患者的影像数据,病历数据、检验检查结果、诊疗费用等各种数据录入大数据系统,统一管理起来,每位医生都能够在系统中查到病人的详细资料以及变更记录。而无需再通过耗时的纸质工作来完成,这对于大夫更好地把握疾病的诊断和治疗十分重要。


3、医疗科研


在医疗科研领域,运用大数据技术对各种数据进行筛选、分析,可以为科研工作提供强有力的数据分析支持。例如健康危险因素分析的科研中,利用大数据技术可以在系统全面地收集健康危险因素数据,包括环境因素,生物因素,经济社会因素,个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等的基础上,进行比对关联分析,针对不同区域、家族进行评估和遴选,研究某些疾病发病的家族性、地区区域分布性等特性。

D. 如何进行大数据分析及处理

探码科技大数据分析及处理过程


聚云化雨的处理方式

E. 大数据挖掘在虚拟医药科研方面的思考

大数据挖掘在虚拟医药科研方面的思考
1.基于大数据挖掘的虚拟医药科研案例
数据挖掘发展到今天,按照时下的概念应该到了“大”数据挖掘的时代了。我们还是先从几个相关案例开始吧。
1.1 虚拟临床试验-大数据采集
我们首先来看这样一个案例。2011年06月,辉瑞制药有限公司宣布开展一项“虚拟”临床研究,该项研究是一个得到美国食品和药物管理局批准的试点项目,首字母缩写为“REMOTE”。“REMOTE”项目是在美国开展的第一项病人只需使用手机和互联网、而不用重复跑医院的临床研究,该项目的目标是要确定此类“虚拟”临床研究能否产生和传统临床研究一样的结果。而传统的临床研究要求病人住在医院附近,并且定期前往医院或诊所进行初次检查和多次后续检查。如果这一项目有效,那它可能意味着全美国的病人都能参加今后的许多医学研究。这样一来,原先的科研项目中未得到充分代表的群体将得以参加,数据收集速度将大大加快,而且成本也很可能会大幅下降,参与者退出的几率也很可能会降低不少。
从上例中,我们可以看到,利用互联网可以收集远远大于传统临床科研样本数目的超大量病人的临床数据,而且其中有些临床数据可能来自于更加便捷的可穿戴健康监测设备。如果这样的研究,在科研设计严谨、质量标准得到有效执行、各种误差得到有效控制的情况下,科研的效率和成果的可信度可以显著提高。正如辉瑞公司首席医疗官弗蕾达?刘易斯-霍尔所说的:“让更多样化的人群得以参与研究有可能会推动医学进步,并为更多的病人带来更好的疗效。”
1.2 虚拟药物临床试验-大数据挖掘
我们再来看另外一个案例。1992年,抗抑郁药物帕罗西汀(Paxil)获准上市;1996年,降胆固醇药物普拉固(Pravachol)正式开售。两种药品生产企业的研究证明:每种药物在单独服用时是有效且安全的。可是,患者要是同时服用两种药是否安全,没有人知道,甚至很少有人想过。美国斯坦福大学的研究人员应用数据挖掘技术分析了数万例患者的电子病历后,很快发现了一个出人意料的答案:同时服用两种药物的患者血糖含量较高。这对于糖尿病患者来说影响很大,过多的血糖对他们来说是一种严重的健康威胁!科学家还通过分析血糖检测结果和药物处方,来寻找隐藏的规律。
对于单个医生来说,他所经历的同时服用这两种药物的病人是很有限的,虽然其中可能有少数的糖尿病患者莫名其妙地血糖升高了,但医生很难意识到这是由于病人同时服用了Paxil和Pravachol造成的。因为这是一种掩藏在大数据中的隐含规律,如果不是有人有目的地专门研究Paxil和Pravachol联合用药的安全性的话,个体医生是很难揭示这个规律的。但是,临床药品成千上万,我们怎么可能对任意组合的两、三种药联合应用的安全性和有效性进行逐一研究呢?数据挖掘很可能是一种有效的、快速的、主动式的探索多种药联合应用问题的方法!
研究者不必再召集患者去做临床试验,那样做的话花费太大了。电子病历及其计算机应用的普及为医疗数据挖掘提供了新的机遇。科学家不再局限于通过召集志愿者来开展传统的课题研究,而是更多地从现实生活中的实验中,如日常的大量的临床案例中筛选数据并开展虚拟科研,这些并非来自计划的课题立项的实验数据保存在许多医院的医疗记录中。
类似本案例,应用数据技术使得研究人员可以找出在药物批准上市时无法预见的问题,例如一种药物可能对特定人群产生怎样的影响。另外,对医疗记录的数据挖掘不仅将为研究带来好处,还会提高医疗服务系统的效率。
1.3 虚拟药物靶标发现-知识发现
我们再看看这样的一类研究。通常新药研发的过程都比较漫长,投入巨大,风险也很高。有数据表明,新药研发的平均时间长达15年,平均耗费超过8亿美元。但是,由于药物疗效的不佳和毒副作用太高,使得许多药物的研发经常在临床阶段就失败了,造成了巨大的经济损失。作为药物研发的源头,药物靶标的发现和识别对药物的研发成功率具有举足轻重性的作用。随着生物信息技术的不断发展,以及蛋白质组学数据、化学基因组学数据的日益增长,应用数据挖掘技术结合传统生物实验技术,可为药物新靶标的发现提供新的技术手段,为靶标识别预测提供新的方法。构建药物靶标数据库,利用智能计算技术和数据挖掘技术对现有的药物靶标数据开展深入探索,以期发现新的药物靶标正是这样一类研究,我们也称之为药物靶标的知识发现。
传统的药物靶标的发现,通常大都是通过大量的、反复的生物化学实验来实现的,不仅成本高、效率低,成功率也很低,犹如瞎子摸象一样,不好掌握方向。而应用数据挖掘这一自动的、主动的、高效的探索技术,可以开展虚拟药物靶标发现,不仅大大加快了药物靶标发现的进程,而且大幅减少了生物化学实验的次数和成本,同时也提高了传统生化实验的成功率。
2. 数据挖掘在虚拟医药科研上的应用
大数据时代,医药研发面临更多的挑战和机遇,为了更好的节约研发成本,提高新药研发成功率,研发出更有竞争力的新药,可以应用数据挖掘技术开展虚拟医学科研和药物研究。数据挖掘在虚拟医药科研上的应用,可以总结为如下几个方面。
2.1 通过预测建模帮助制药公司降低研发成本提高研发效率。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
2.2 通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快临床试验进程,提出更有效的临床试验设计建议。例如: 通过聚类方法对患者群体进行聚类,寻找年龄、性别、病情、化验指标等方面的特征,判定是否满足试验条件,也可以根据这些特征更好的设立对照组。
2.3 分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对其他适应症的营销。通过关联分析等方法对试验数据进行挖掘可能会发现事先想不到一些成果,大大提高数据的利用程度。
2.4 实时或者近乎实时地收集不良反应报告可以促进药物警戒。药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防。通过聚类、关联等大数据挖掘手段分析药品不良反应的情况,用药、疾病、不良反应的表现,是否跟某种化学成分有关等。例如不良反应症状的聚类分析,化学成分与不良反应症状的关联分析等。另外在一些情况下,临床实验暗示出了一些情况但没有足够的统计数据去证明,现在基于临床试验大数据的分析可以给出证据。
2.5 针对性药物研发:通过对大型数据集(例如基因组数据)的分析发展个性化药物。这一应用考察遗传变异、对特定疾病的易感性和对特殊药物的反应的关系,然后在药物研发和用药过程中考虑个人的遗传变异因素。很多情况下,病人用同样的用药方案但是疗效却不一样,部分原因是遗传变异。针对同病种的不同的患者研发不同的用药,或者给出不同的用法。
2.6 对药物化学成分的组合和药理进行挖掘,激发研发人员的灵感。例如针对于中医药物研发,用数据挖掘手段对于中药方剂和症候进行分析研究,探讨方剂和针对症状之间的联系,从功效、归经、药性和药味等方面进行分类特征分析。
3. 虚拟药物临床试验分析系统
现在越来越多的临床科研和药物临床试验都是从日常的临床工作中生成的大数据中经过严格的条件筛选来提取数据的。正如我们在本文1.1和1.2中提到的案例一样,所谓虚拟药物临床试验,是以更广泛的临床数据采集,和从海量的医院电子化的病历中按照事先的设计需求经过严格的条件筛选来开展的,虽然是虚拟的方法而不是传统的方法,这种药物临床试验研究有样本代表更广泛、成本低、效率高、研究成果更丰富等优点。采用虚拟研究的方法可以完全替代某些传统的药物临床研究,也可以作为某些传统的药物临床研究的预试验或探索性研究,以使真正的药物临床研究工作多、快、好、省。我们现在来看一下虚拟药物临床试验分析系统是如何工作的。
3.1 虚拟药物研究的基本思路
1、建设药物临床试验数据仓库,充分整合和积累的临床数据和药物应用数据。 2、设计、选取药物临床试验的观察组样本与对照组样本。 3、应用数据挖掘技术探索药物对于疾病治疗的效果和产生的副作用。 4、应用统计学技术进行药物临床试验效果的推断和评价。
3.2 建立药物临床数据仓库
建设药物临床试验数据仓库有两种途径,一种是通过经典的药物临床试验设计来定制化和采集相关数据,传统的方法主要记录在纸质文档上,也有专门数据录入软件,这种方法采集的数据是按照预先设计进行的,直接形成药物临床试验的专用数据,但通常样本数据量不会太大;另外一种是将医院大量的、历史的临床用药数据进行抽取、变换、装载,然后充分整合积累的其他临床数据和药物应用数据,形成药物临床试验数据源,为生成药物临床试验数据提供支撑,这样的样本数据量可能很大,我们后面演示的方法就是采用种数据进行“虚拟”样本筛选和分析的。
3.3 药物临床试验样本设计
药物临床试验样本根据药物研究的需要可以有很多设计,例如单因素单水平设计,单因素两水平设计,单因素多水平设计,配对设计设计,区组设计设计,重复测量设计等。我们这里以两因素区组设计为例来介绍一下样本筛选。本例仅以方法演示为目的,不考虑严格的医学专业意义。
本研究的疾病为动脉硬化心脏病,处理因素为药物应用,共有三种药物,分别为倍他乐克、诺和灵、硝酸异山梨脂。区组因素为年龄,分了三个年龄段。观察指标为血钠。我们科研设计按照“三要素、四原则”进行数据筛选。所谓“三要素”是研究人群,处理因素和观察对象。所谓四原则是指随机、对照、重复、均衡等原则。按照如下图一的输入条件,可以将数据集筛选出来,然后再用统计分析工具进行统计分析。

3.4 药物临床数据挖掘
应用数据挖掘技术不仅可以提高药物临床数据的利用程度,而且可以探索和发现药物临床应用中的新的积极作用和新的消极作用。利用多种数据挖掘方法分析临床试验数据和病人的电子化数据,可以确定药物更多的适应症和发现未知的副作用。在对临床试验数据和病人记录进行挖掘分析后,可以对药物进行重新定位,或者实现针对其他适应症的推广应用。通过对药物试验数据进行挖掘可能会发现意想不到一些成果,大大提高数据的应用效益。
如本例,我们使用数据挖掘的方法深入研究药物对于实验室指标的影响。探索和发现药物临床应用中的正负影响,可以通过观察病人用药前后的很多医学特征和生理指标来进行,而观察更加客观的各种实验室指标是很多药物研究的必备设计之一。下面是一个应用倍他乐克药物治疗冠心病的研究,我们应用了数据挖掘的有关技术分析了倍他乐克的血药浓度的变化对病人各个实验室指标的影响,如下图二,显示了部分实验室指标的影响结果。

以上结果需要与临床医务人员以及药物研究人员共同探讨。在刨去了各种人为因素以及业务系统客观影响因素之后,我们可以发现先前未知的倍他乐克对病人生理指标的影响,其中有些影响在医学上可能是积极的,而有些影响在医学上可能是反面的。
3.5 统计分析设计
虚拟药物临床试验分析系统的统计分析模块,包含了药物研发中常用的统计分析方法,如T检验、方差分析、相关分析、回归分析、非参数检验等,设计思路按照统计学思维,首先对数据进行验证,根据验证结果选择统计分析方法。下面我们以重复测量设计为例进行说明。
本研究的疾病为动脉硬化心脏病,处理因素为药物应用倍他乐克,观察指标为我们从数据挖掘中发现有影响的血钾指标。我们可以使用3.3提供的模块对筛选的样本进行提取和分析,也可以从本模块直接选取所需的数据并分析。重复测量分析有两种方法,一个是Hotelling T2检验,另一个是方差分析,本系统提供了这两种统计检验方法。
部分样本数据如下图三所示:

这里,我们仅观察一下方差分析方法的结果输出,如下图四所示。

从图中我们可以看到,根据P值得到:处理因素“倍他乐克”药物对血钾起作用,测量时间对血钾有影响,处理因素和测量时间有交互影响。从而验证了我们应用数据挖掘得到的结果。
4. 数据挖掘在中药研发上的应用
以上内容,我们重点是以西药的研究应用为例来说明以数据挖掘为特色的虚拟医药研究的方法。其实,数据挖掘和虚拟药物研究还非常适合于中医中药的研究工作,因为中医学本身是一个经过几千年不断摸索、积累和验证的、知识体系庞大的、具有完整理论体系的医学科学,但我们还需要应用现代知识不断地深入理解、挖掘、提高和应用,以便与现代科学能更好地融合。而数据挖掘正是探索和解释中医学奥秘的有力工具!
国内许多单位也开展一些中医中药数据挖掘的局部性的尝试。现在,我们就将这些数据挖掘在中医中药研究中的尝试加以汇总,分列如下: 1、中药配方中的文本数据挖掘; 2、对“药理”起关键作用的“有效成分”——单体或化学成分的挖掘; 3、中药方剂配伍规律的数据挖掘与研究; 4、方剂配伍物质基础与药效如(证侯、症状)关系的数据挖掘; 5、方剂配伍的用量与方剂效用级别间的关系(量效关系及模型) 挖掘; 6、中药药性理论与中药有效成份的关系挖掘; 7、方剂中各药味间的相关性挖掘; 8、相似病症的隐含相似关系挖掘; 9、同种疾病不同药方的相似性和差异性的挖掘和研究。 10、数据挖掘用于不确切病症的分类和研究。

F. 大数据技术如何在农业中运用

根据目前农业大数据的主要来源,可以将其应用领域归纳为以下几个方面:
(1)农业生产过程管理方面应用
运用大数据的先进技术对农业各主要生产领域在生产过程中采集的大量数据进行分析处理,进而提供“精准化”的农资配方、“智慧化”的管理决策和设施控制,达到农业增产、农民增收的目的。
(2)农业资源管理方面应用
农业资源除了土地、水等自然资源之外,还包括各种农业生物资源和农业生产资料。我国虽然地大物博,但可以进行农业生产的资源已越来越少。从目前农业基础实际状况来看,有必要运用物联网、大数据等先进技术对农业资源进一步优化配置、合理开发,从而实现农业的高产优质和节能高效。
(3)农业生态环境管理方面应用
农业生态环境具体包括土壤、大气、水质、气象、污染、灾害等,需要对这些农业环境影响因子实现全而监测、精准化管理。
(4)农产品和食品安全管理方面应用
农产品安全管理涉及产地环境、产前产中产后、产业链管理、储藏加工、市场流通、物流、供应链与溯源系统等食品链的各个环节,通过对农产品质量安全监管信息的分析处理,实现食品安全风险的预警及质量安全突发事件的应急管理。
(5)农业装备与设施监控方面应用
可以提供农业装备和设施在工作运作情况下状态的监控、远程诊断以及服务调度等方面的智能化管理和应用。
(6) 提供各种农业科研活动产生的大数据应用
农业科研产生的大数据有包括空间与地面的遥感数据,还有如基因图谱、大规模测序、农业基因组数据、大分子与药物设计等大量的生物实验数据:利用科研试验大数据的分析,能够更好地指导农业生产和生活。

G. 如何有效利用大数据分析

1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。

据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集

数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析

计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘

前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

H. 大数据分析在疾病与健康研究方面的应用

大数据分析在疾病与健康研究方面的应用

大数据分析技术将在以上方面发挥着特殊的作用。

一、疾病与健康研究

在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。

1、健康研究

中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:
1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。

1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。

1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。

1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。

1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。

1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。

1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。

2、亚健康研究

世界卫生组织将机体无器质性病变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质性病变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。

对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:

2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。

2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。

2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。

2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。

2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。

3、疾病研究

中国面临的严重危害人民健康的疾病包括:

传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;

慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;

精神和心理疾病;

小儿出生缺陷。

对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:

3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。

3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。

3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。

3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。

3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。

3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。

3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。

二、环境与健康研究

环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。

应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:
1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。

2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。

3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。

4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。

5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。

6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。

7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。

三、医药生物技术与健康

生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。

以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:

1. 利用生物信息技术进行生物信息的存储与获取。

2. 利用生物信息技术开展基因的序列对比、测序和拼接。

3. 利用生物信息技术进开展基因预测。

4. 利用生物信息技术进行生物进化与系统发育分析。

5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。

6. 利用生物信息技术进行分子设计和药物设计。

7. 利用生物信息技术进行肿瘤分类及遗传学分析。

8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。

9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。

四、卫生宏观决策支持

卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。

以上是小编为大家分享的关于 大数据分析在疾病与健康研究方面的应用的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与如何利用大数据进行科研相关的资料

热点内容
iphone备忘录提示音 浏览:801
苹果5s电信网络设置 浏览:31
win10系统中文版吗 浏览:971
公司采购一般公布在哪些网站 浏览:70
如何连接车上的无线网络 浏览:170
mate7升级emui31 浏览:714
tomcat7forlinux下载 浏览:437
在根里查找文件linux 浏览:819
饥荒安卓人物mod 浏览:91
如何看地灾监测预警数据变化 浏览:864
pdf文件反了怎么转回去 浏览:767
angularjs封装service 浏览:42
亚马逊js工具 浏览:641
qq动态生肖蛋糕图片 浏览:962
cad文件怎么存到u盘 浏览:916
iphone6芯片型号查询 浏览:493
语音加载的文件在哪里 浏览:928
无人机编程是什么意思啊 浏览:539
百万级数据如何遍历 浏览:103
数据中心管理费用大概多少 浏览:867

友情链接