❶ 大数据的应用领域有哪些呢
随着5G时代的到来,大数据应用得到迅速的发展,并且得到很多人的关注。大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1. 制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2.电商行业:电商行业是最早将大数据用于精准营销的行业,它可以根据消费者的习惯提前生产物料和物流管理。随着电子商务的越来越集中,大数据在行业中的数据量变得越大,并且种类非常多。
3.金融行业:大数据在金融行业的使用是非常广泛的,主要使用在交易过程中。现在许多股权交易都是使用大数据算法进行的。这些算法能够越来越多地考虑社交媒体和网站新闻,并且决定接下来的几秒内是选择购买还是出售。
4.互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5.能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
6.物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
7.生物技术:基因技术是人类未来挑战疾病的重要武器。科学家可以利用大数据技术的应用,这样能够加速他们自己的基因和其他动物基因的研究过程,并且还能成为人类未来克服疾病的重要武器之一。
❷ 工业大数据大有可为,浅谈制造业7大应用场景
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。
一、加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
二、设备故障分析及预测
在制造业生产线上,工业生产设备都会受到持续的振动和冲击,这导致设备材料和零件的磨损老化,从而导致工业设备容易产生故障,而当人们意识到故障时,可能已经产生了很多不良品,甚至整个工业设备已经奔溃停机,从而造成巨大的损失。
如果能在故障发生之前进行故障预测,提前维修更换即将出现问题的零部件,这样就可以提高工业设备的寿命以及避免某个设备突然出现故障对整个工业生产带来严重的影响。随着工业4.0的到来,智能工厂的工业设备都配上了各种感应器,采集其振动、温度、电流、电压等数据显得轻而易举,通过分析这些实时的传感数据,对工业设备进行故障预测将是一种行之有效的措施。
因此设备故障预测方案成为了制造行业所青睐的解决方案,其具备的核心功能有:
1、故障超前预警,减少设备停机时间;
2、分析结果实时推送,减少人工成本;
3、适用于企业各种类型的设备,通用性强。
三、工业物联网生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。
首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。
四、产品销售预测与需求管理
近年来,保险业加速了数字化进程,大数据与保险营销深度融合,成为现代化保险营销的重要武器。慧都大数据助力保险行业精准营销,并成功帮助中意人寿保险有限公司更好地服务客户和发挥忠诚客户,提高销售效率及客户复购率。
五、工业供应链的分析与优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
六、生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的 历史 数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现 历史 预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。
七、生产质量分析与预测
在工业生产中,设备失效、人员疏忽、参数异常、原材料差异、环境波动等因素而导致质量偏离,引起质量等级的缺陷和损失非常巨大。工艺流程复杂的大型制造业,如钢铁、 汽车 、电子、服装等行业,信息数据孤岛凸显,导致质量问题频发,尤其需要“及时发现和预测异常,迅速控制和分析质量异常的原因,进行生产过程改进,稳定生产过程,减少产品质量波动”。
生产质量分析,从工厂订单下单-订单生产-流入市场, 针对整个生产链进行全面的质量分析。其中,打通质量和人、机、料、法、环等数据,各生产数据环环相扣,聚焦质量管理的全量数据分析,帮助企业快速 探索 缺陷根本原因。
1、打通质量和人、机、料、法、环,对影响质量的全量数据进行交互分析, 探索 相互关系,挖掘数据背后的真实原因,获取结果“是什么”,回答“为什么”。
2、将传统的静态汇报模式,改为交互式动态会议,随时随地可以组织生产、质量相关专题会议。通过对维度展示生产和质量KPI,实时预警、掌握产线运营状况。
3、简单易上手的质量分析工具,员工只需对数据进行选取、拖曳,自助灵活地达成期望的数据结果。
4、摒弃以往静态的数据报表,整合多个业务系统数据,多场景数据大屏,自适应多屏,进行综合展示分析,让决策更清晰。
————————————————
❸ 宣化区大数据装备制造产业园地址
怀来县东延路与葡萄大道交叉口。根据查询根据查询网络地图显示得知,宣化区大数据装备制造产业园地址是河北省张家口市怀来县东延路与葡萄大道交叉口东南方向。大数据产业园指大数据产业的聚集区或大数据技术的产业化项目孵化区,简而言之,就是大数据企业的孵化平台,是大数据企业走向产业化道路的集中区域。
❹ 大数据与智能建造的关系
具体如下。
1.大数据帮助制造业实现商业模式的转变大数据可以帮助我们实现对客户的信息分析和挖掘,其产生载体包括手机、电脑、传感枝凯器等设备。传感器数据属于工业大数据的主要来源,这些数据是在工业生产过程中产生的,可以帮助我们。2.大数据分析是智能制造的核心大数据的目的并不是追求数据量大,而是通过系统式地数据收集和分析手猛拆唤段,实现价值的大化。所以推动智能制造的并不是大数据本身,而是大数据的分析技术。在新制造革命的转型中。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处御册理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中。
❺ 大数据主要应用的行业有哪些
大数据应用领域极其广泛,涵盖了金融保险、医药医疗、基础电信、交通管理、物流零售、文化娱乐、团野基能源、旅游、农业、工业等。随着政府与公共事业服务意识的不断加强与转变,以及更智慧的执政与管理理念的带动,对于数据的管理与分析需求日益强化,大数据在政府/公共事业领域应用也将日趋广泛。
制造业: 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融塌谨业: 大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业: 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业: 借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业: 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业: 利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业: 随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业: 利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理: 利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学: 大数据可以帮助我们实现流行病预测、智慧医疗脊数、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
公共安全领域: 政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活: 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
❻ 大数据和人工智能如何赋能工业制造领域能否举个例
近年,中国经济已经迈向高速发展阶段,中国传统制造业的要素成本高、产线效率低、用工难的问题亟需得到解决,传统制造业亟需智能化升级。人工智能技术的崛起让传统工业的智能化转型成为可能,尤其是在工业视觉、工业质检等领域的广泛渗透,相比人类视觉,机器视觉优势明显,检测效率高、速度快、精度高、更具可靠性。随着深度学习、3D视觉技术、高精度成像技术和机器视觉互联互通技术的持续发展,机器视觉的性能优势将进一步加大。
在现代工业自动化生产中,连续大批量生产中每个制程都有一定的次品率,单独看虽然比率很小,但相乘后却成为企业难以提高良率的瓶颈,并且在经过完整制程后再剔除次品成本会高很多,因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。
利用大数据、机器学习、深度学习技术对生产过程中大量的生产参数、工艺参数、缺陷数据等进行分类、回归、预测等,就能够很好的帮助企业解决编程/调试时间过长、误判过高、因人而异的操作结果等问题。
❼ 大数据应用与哪些行业
大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(7)大数据制造扩展阅读
七个典型的大数据应用案例
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2、Tipp24AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3、沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技悉指培术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5、Morton牛排店的品牌认知睁唯。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连逗改锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6、PredPolInc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
❽ 大数据如何颠覆制造业
大数据如何颠覆制造业_数据分析师考试
通过寻找决定过程效益的核心因素,大数据与在其上进行的高级分析如何厘清制造中的价值链,然后帮助管理人员采取行动,以便对制造过程进行持续改进。下面是关于大数据如何颠覆制造过程的10条途径:
一、在生物制药行业的生产过程中,进一步提高精确度、质量和产量。在生物制药的生产流程中,制造商通常需要对超过200种以上的变量进行监视,以便确保原料成分的纯净度,同时确保生产出的药品符合标准。让生物制药生产过程充满挑战的因素之一是:产量会在50%至100%之间变化,而且还无法马上辨别出原因。而使用高级分析,制造商能够对9个最能够影响产量变化的变量进行追踪。通过上述手段的帮助,他们将疫苗的产量提高了50%,每年在单一疫苗品种上节省的费用就达到500万至1000万美元。
二、加快IT、制造与营运的整合,让工业4.0的愿景更快成为现实。工业4.0是由德国政府提出,旨在通过发展智能工厂,促进制造行业自动化。根据供应商、客户、有效产能以及费用的相关约束,大数据已经被用在优化生产进度方面。那些存在高度管制的行业里的制造业价值链上的厂商得益于德国供应商和制造商的帮助,正在大踏步迈向工业4.0。同时,以此为契机,这些厂商的各个部门能够充分发挥各自功能,而大数据和高级分析对于取得成功来说至关重要。
三、大数据帮助提高制造绩效的3个主要方面分别是:更好的预测产品需求并调整产能(46%),跨多重指标理解工厂绩效(45%)以及更快地为消费者提供服务与支持(39%)。上述数据是根据“LNS研究与MESA国际”的近期调查得出的。
四、在六西格玛DMAIC(定义、测量、分析、改进及控制)框架中整合高级分析,以便持续改进对一个由DMAIC驱动的改进计划的工作过程取得更加深入的理解,同时就该计划如何对制造绩效的所有其他领域造成的影响进行深入领会。与以往相比,这一领域的发展有望促使生产流程转向更加面向消费者驱动的方向。
五、与以往相比,能够更加细致地从供应商质量层面进行审视,同时能够更加精确地预测供应商的绩效通过对大数据和高级分析的应用,制造商能够实时查看产品质量和配送准确度,对如何依据时间紧迫性在不同供应商之间分配订单生产任务进行权衡。对产品品质的管控优先于发货进度。
六、对产品合规性进行监测并且追溯到具体生产设备成为可能通过在生产中心的所有设备上配备传感器,运营经理能够立即了解每一台设备的状况。通过高级分析,每台设备及其操作者的工况、绩效以及技能差异能够得以体现。对于改进生产中心的工作流程来说,这些数据非常重要。
七、只销售利润率最大的定制产品型号,或者以以销定产方式生产对产能影响最小的产品型号对于拥有许多复杂产品型号的制造商来说,定制产品或者以销定产的产品能够带来更高的毛利率,但是在生产过程没有被合理规划的情形下,同样可能导致生产费用的急剧上升。运用高级分析,制造商能够计算出合理的生产计划,以便在生产上述定制或以销定产的产品时,对目前的生产计划产生最小程度的影响,进而将规划分析具体到设备运行计划、人员以及店面级别。
八、将质量管理和合规体系综合考虑并给予两者企业层面优先级对于制造商来说,是时候针对产品质量和合规性给予更具战略性的眼光了。麦肯锡的文章给出了数个应用大数据和分析的制造商的例子,指出如何通过大数据以及分析手段,针对那些与产品质量管理和合规性最相关的参数进行分析,以便帮助管理人员获得更加深刻的理解。这些参数中的大部分是企业层面的,而不仅仅存在于产品质量管理或者合规部门。
九、量化每日产能对企业财务状况的影响并具体到生产设备层面通过大数据和高级分析,制造商的财务状况和每日生产活动能够直接联系起来。通过对每台生产设备进行追踪,管理者能够了解工厂的运转效率,生产规划负责人和高级管理人员能够更好地调整生产规模。
十、通过对产品进行监测,制造商能够主动为客户提供预防性维护建议,以便提供更好的服务制造商开始生产更加复杂的产品,需要在产品中配备板上传感器并通过操作系统加以管理。这些传感器能够收集产品运行情况的数据,并且根据情况发出预防性维护的通知。通过大数据和高级分析,这些维护建议能够在第一时间发出,消费者也就能够从中获得更多的价值。目前,通用电气在它的引擎和钻井平台上使用了类似的手法。
以上是小编为大家分享的关于大数据如何颠覆制造业的相关内容,更多信息可以关注环球青藤分享更多干货