A. 未来24个月,机器学习领域将可能有哪些重大突破
近日,卡内基梅隆大学(CMU)计算机学院院长Andrew W. Moore和副院长Philip L. Lehman来到微软亚洲研究院,与研究员们分享了过去两年中人工智能领域的一些技术突破,并从业界和学界两个角度,探讨了他们对于人工智能接下来发展方向的看法。
今天,我们就在这里与大家分享此次演讲~以下为Andrew W. Moore演讲的精简版文字整理。
2005到2015年间,我们见证了数据科学在学术界和商业界的发展,学会了如何正确地使用分布式计算、GPU,如何很快的建立抽象模型等等。仿佛AI完全转化成了机器学习,每个人都在处理数据、基于数据为复杂的世界建模……
大约2014年,许多人开始意识到这些工作还远远不够,它们仅能实现改变世界蓝图的一半,而另一半则是被我们视为数据科学最顶层的决策系统。上世纪90年代,我们对所建立的系统都十分乐观。但渐渐地,我们发现,这些系统在应用到实际生活中时并没有效果,比如在优化城市交通数据时,一个完美的优化算法并没有帮助,因为那时我们没有任何关于城市交通的数据。所以现在,我们严肃认真地考虑重新回到基于数据科学的大规模优化和决策上。
而在大学里,我们会思考更多的可能性。有些教授认为自主性(autonomy)是最重要的,是AI的真正目标,对此观点我们十分尊重。它在很多方面,比如深空探索或需要快速决策的情况下,都将有重要的应用。当然,自主性不是AI最终唯一的目标。它还包括其他方面,例如增强人类(augmented humans)等等,在我看来这和微软的核心任务,如何更好地帮助人类工作、生活,有着很大的重合度。我们需要帮助人类更好地工作、生活,同时也需要自主性。
在数据科学方面,我们需要关注三个部分。首先是人工智能的基础建设,包括大型优化策略,它需要我们擅长大规模线性规划问题和随机梯度下降等问题。其次,是自主性(autonomy),最后是增强人类(augmented humans)。
Andrew W. Moore是卡内基梅隆大学(CMU)计算机学院的第十五位院长。他的研究领域主要有统计机器学习、人工智能、机器人技术以及大数据统计计算。他曾在机器人控制、制造、强化学习、天体物理算法、电子商务领域都有所建树。他的数据挖掘教程下载量已达100多万。他建立了Auton Lab研究组,该研究组设计了有效的关于大型统计操作的新方法,并在多种情况下都实现了几个数量级的加速效果。Auton研究组的成员与许多科学家、政府机构、技术公司都有着密切的合作,旨在不断寻求在计算、统计数据挖掘、机器学习和人工智能领域中最函待解决的问题。2006年,Andrew加入谷歌,参与Google Pittsburgh的建立。同时,他也参与了包括Google Sky和Android SkyMap的相关事宜。2014年8月,Andrew重返卡内基梅隆大学(CMU),继续担任计算机学院院长。
B. 大数据支撑人工智能发展 应用爆发将迎拐点
大数据支撑人工智能发展 应用爆发将迎拐点
随着大数据等技术发展,人工智能应用令人瞩目。有专家认为,这是20年来全球最重要的科技,并将成为工业机器人、无人机、无人驾驶等新兴产业的重要基础。
人工智能应用爆发
记者从微软亚洲互联网工程研究院获悉,微软人工智能机器人“小冰”即将登陆屏幕,成为上海广播电视台东方卫视早间一档新闻直播节目的“主持人”。
人工智能已成为当今学术界、产业界,甚至是社会上火热的话题。全球科技领域预言家、《失控》作者凯文.凯利日前表示,未来20年全球最重要的技术是人工智能。
华安证券认为,“互联网+”概念中,随着人工智能技术的发展,可以看到利用互联网技术与人工智能自动化技术的深度融合将成为新的高精尖科技领域。
微软亚洲互联网工程研究院院长王永东坦言,人工智能发展一开始发展缓慢,但这一两年随着互联网发展,积累了许多数据,让普通用户贡献数据成为可能,以大数据和云计算的基础,对人工智能的发展起到极大促进作用,将从前以算法为主的模式发展到“算法+大数据”结合的发展模式。搜索引擎和大数据技术是人工智能发展的基础。
投资大幅增加
发达国家已充分认识到人工智能的战略意义,纷纷从国家层面加大投入。比如,美国国防部、欧盟在近年以资金或项目的方式支持人工智能技术的发展。
外国科技巨头也加速在人工智能领域的投资和研发。有资料显示,截至2014年4月,谷歌已斥巨资收购了包括波士顿动力公司在内的多家机器人公司,还不惜重金收购代表人工智能发展方向的深度学习神经网络技术公司。脸书在2013年底宣布成立新的人工智能实验室,宣称要给人工智能带来重大突破,15亿用户所产生的数据和搜索技术成为其发展人工智能的基础。微软也是较早研究人工智能的企业,除了布局深度学习之外,微软还在软件层面加强了人工智能的应用和基础研究,并基于必应搜索技术以Windows10为入口直接推出了面向公众的人工智能产品小冰和小娜。
微软亚洲互联网工程研究院资深总监、“小冰”项目负责人李笛直言,人工智能投入巨大,微软进行了大量技术积累,未来将会提供人工智能的基础服务,再接入上下游相对应的垂直行业,形成一种新的行业或矩阵。
特斯拉CEO伊隆.马斯克最近宣布,将和多位硅谷投资人发起OpenAI人工智能项目,该项目获得了10亿美元投资。
发展迎拐点
我国科技企业在人工智能领域的研发和人才等方面的投入不断加大,人工智能领域的技术储备和积累与先进国家企业的差距不断缩小。据网络介绍,其已建成全球最大的深度神经网络,包含200亿个参数,在人工智能多个应用领域达到世界领先水平。
业内人士和专家认为,人工智能技术将极大提升和扩展人类的能力边界,对促进技术创新、提升国家竞争优势,乃至推动人类社会发展产生深远影响。当前,人工智能技术的发展已迎来拐点。
从宏观层面看,由于人工智能技术与互联网密切相关,而互联网的“泛在化”使其正在渗透进生产生活的各个角落,因此人工智能技术对于人类社会的影响将是全面而深远的。无论是机器人、无人飞机,还是其他智能设备,都需有强大的人工智能系统作为核心技术支撑。
从微观层面看,人工智能有着改变操作系统、互联网入口乃至各种传统产品的潜能。微软全球副总裁陆奇说,通过听觉和基于大数据和用户个性化研究,将极大提升用户体验和获取信息的方式。比如,作为操作系统层面上的人工智能,微软人工智能助手“小冰”背后不仅可以连接整个互联网的大数据,更能将来自合作伙伴的信息、服务和产品囊括其中,实现人工智能入口的价值。
未来人工智能的商业化潜力巨大。陆奇认为,从商业角度看人工智能的发展具有颠覆性,很多商业模式和新的需求行为将随之形成。同时,人工智能也是具有显著产业溢出效应的基础性技术,能够推动多个领域的变革和跨越式发展。
网络公司CEO李彦宏认为,人工智能可以加速发现医治疾病的新疗法,降低新药研发成本,促进医疗产业的创新;可带动工业机器人、无人驾驶汽车等新兴产业的发展,将成为新一轮工业革命的推动器。
“目前,可说是介入人工智能的较好时机。”李笛说,“人工智能投入巨大,需要深入的积累,未来人工智能可能会形成产业链,但现在还处于雏形。”
李彦宏建议,国家需将传统“相马模式”的科研机制,转变为“赛马模式”的市场机制,吸引相关各方的广泛参与。
同时,尽快搭建人工智能基础资源和公共服务平台,支撑各计划参与方的数据调用、模型调试和应用开发,高效对接全社会的智力、数据、技术和计算资源,依托统一平台实现资源共享,促进研发创新。
C. 大数据告诉你:学霸是怎样炼成的!
大数据告诉你:学霸是怎样炼成的!
近日,国内大数据领域领军专家、电子科技大学周涛教授与有着近十年学工部长教育 经验 的吕红胤研究员,花费了近大半年的时间,联合研发出一套“大数据”系统——“学生画像”。
该系统利用校园一卡通追踪学生行为轨迹,通过对学生吃饭、打水、出行、消费行为记录,“算”出每名学生的 学习 、生活状态。更厉害的是,通过对学生日常学习状态的追踪,该系统还会对学生的期末成绩乃至 大学四年 后的 就业 情况作出预警——
注:系统用排名均值来计量学生成绩的优异。排名均值=学生在所在专业的年级排名/本专业的总人数,排名均值越接近0,代表该学生的成绩越好。
学霸是如何炼成的?
学霸出门时间通常比较固定
研究人员分析了近半年的 宿舍 门禁、吃饭、进出图 书 馆等刷卡记录,发现成绩较好的学生作息时间比成绩差的更规律。
例如,某 专业排名 第3的小雪,几乎每天固定在8点、12点、14点三个时间点出门,留在宿舍的总时长低于专业平均水平。而该专业成绩排名第61的小石每天进出宿舍的时间很随机,而且通常每次外出的时长不超过2小时,“宅指数”明显高于专业平均水平。
此外,研究人员还发现,9点前出现在食堂吃早餐的同学,成绩也相对更好。
学霸最爱在晚上10-11点洗澡
上图中,横轴代表了时间点,竖轴则代表了在当前的时间点下,学生的洗澡概率。电子科大的澡堂是全天开放的,但研究团队发现,晚上10——11点,学习好的学生与学习差的学生洗澡概率出现了较大的差异。简言之,集中在晚上10到11点之间洗澡的学生成绩更优异。
不管是出门时间还是洗澡时间,抑或是相对固定的早餐时间,都是学生作息规律的具体体现。研究人员发现,较有规律的学生群体,除了成绩上的优势外, 考研 成功 率以及 出国留学 获得奖学金的概率均高于一般学生。这也从侧面印证了生活的规律性对于成绩有正面影响的结论。
学霸爱泡图书馆和自习室
在样本量足够庞大的情况下,学生在一定时期内的行为追踪确实可以反映他的学习和生活状态。比如,如果一个学生的打卡记录显示,他长期在教学楼的饮水机上打水,那一定程度上就说明了,教学楼是他的长期活动地点。
“学生画像”的研究团队,通过大数据分析,发现了出入图书馆次数多少与学习成绩的好坏存在着一定的相关性,即:出入图书馆次数比较多的学生,成绩要仔码优于出入图书馆次数比较少的学生。同一个学生,随着他出入图书馆次数的增多或减少,他的成绩排名在上销戚仔下浮动。如图↓↓
这样的相关性,同样适用于学校的教学楼↓↓(注:在教室打水代表该学生出现在了教学楼~)
学霸也扎推?
现实中,每个人都会受到种种环境的影响。无疑,处于校园之中,身边人的学习状态,自然也会影响到学生自身的成绩好坏。
研究团队发现,如果一个 大学生 ,他身边的朋友成绩比较好,那他自身的成绩也相对较好!
想要成为一枚学霸?先找个学霸好友吧——
期末会不会挂科?算一下吧
在这项研究中,研究团队专门设计出了一系列辅助学生更好完成大学学业的功能模块——“挂科预警”。
想知道你学期末会不会挂科?那就算一算喽!
挂科率= 努力 程度 + 学习基础;
努力程度依据:教学楼打水频率+进出图书馆的时间与次数;
学习基础:用已考科目成绩、已考与将考科目之间的关联性算出;
一旦你的挂科率触碰到了预警红线,那系统便会自动为负责你学习的辅导员推送预警信息!
“前方高能预警,您的挂科率有偏高趋势,请好好学习——”自从有了“挂科预警”系统,妈妈再也不用担心我挂科了——
四年后,你会成为失业大军中的一员吗?
如今,就业形势一年比一年紧张。作为学生,你在担心 毕业 即失业?作为高校的管理者,你会困惑于如何帮亏汪助学生突破重围吗?嗯,好消息来了!
“学生画像”研究团队通过大量的数据分析,研究得出了一个学生的毕业去向与他在校期间的生活规律有着一定的关联性。
电子科技大学教育大数据研究所副所长、原微软亚洲研究院的连德富教授在接受中国青年报(ID:zqbcyol)采访时表示,通过对比往届 毕业生 的毕业去向,他们发现,就业困难学生群体身上确实存在某些相似的行为特征。比如,与其他同学相比,就业困难学生在校期间的生活普遍不太规律。此外,就业困难学生在图书馆的借阅书目也更偏向于悬疑科幻小说以及与游戏相关的 书籍 。
近年来,越来越多的大学生毕业后选择 创业 。麦可思研究院研究发现,包括本科毕业生和高职专院校毕业生在内的中国大学生毕业后选择自主创业的比例基本呈逐年上升的趋势:2007年1.2%,2008年1%,2009年1.2%,2010年1.5%,2011年1.6%,2012年2%,2013年2.3%,2014年2.9%。
在连德富教授看来,大学里的创业一族也有“大数据”特点。偏好创业的学生跑市区的频率要高于普通学生。