导航:首页 > 网络数据 > 大数据三个重要的技术问题

大数据三个重要的技术问题

发布时间:2023-06-29 20:51:59

A. 大数据技术应用需要注意什么

现在很多数据科学家都是在研究大数据的技术,很多人只是听过大数据这个词,但是对大数据还是不太了解的,对于大数据现在需要解决的关键问题不是很明朗。今天我们在这篇文章中给大家讲一讲大数据技术的基础应用需要注意什么。
就目前而言,大数据需要解决的关键问题就是数据、知识、服务、数据采集和管理,挖掘分析获取知识,知识规律进行应用转化为持续服务。只要我们解决好这三个问题,才算大数据应用落地,那么从学习角度讲,大数据学习特别要注重数据科学的实践应用能力,而且实践要重于理论。从模型,特征,误差,实验,测试到应用,每一步都要考虑是否能解决现实问题,模型是否具备可解释性,要勇于尝试和迭代,模型和软件包本身不是万能的。
我们还需要考虑大数据如何走出实验室和工程化落地,这就对我们有四点要求,一是不能闭门造车;二是要走出实验室充分与业界实际决策问题对接;三是关联关系和因果关系都不能少,不能描述因果关系的模型无助于解决现实问题;四是注重模型的迭代和产品化,持续升级和优化,解决新数据增量学习和模型动态调整的问题。所以,大数据学习一定要清楚我们是在做数据科学还是数据工程,各需要哪些方面的技术能力,现在处于哪一个阶段等,不然为了技术而技术,是难以学好和用好大数据的。
我们在学习大数据的时候,还是要注意几个关键的问题,一是重视可视化和业务决策,大数据分析结果是为决策服务,而大数据决策的表现形式,可视化技术的优劣起决定性作用;二是,从整个大数据技术栈来考虑技术选型和技术路线的确定;三是建模问题处于核心地位,模型的选择和评估至关重要。一般来说,在课堂和实验室中,多数模型的评估是静态的,少有考虑其运行速度、实时性及增量处理,因此多使用复杂的臃肿模型,其特征变量往往及其复杂。四是开发语言的选择,基础框架系统Java是必须掌握的,应用级的机器学习和数据分析库Python是必须掌握的,而要深入各种框架和学习库的底层,这些都是我们需要注意到事情。
以上的内容就是小编为大家介绍的大数据技术应用需要注意的知识,需要强调的是,大家在学习知识的时候还是要注重上述提到的内容,希望这篇文章能够给大家带来帮助。

B. 大数据的关键技术

大数据的关键技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用,其中包括大数据检索、大数据可视化、大数据应用、大数据安全等。

技术是解决问题的方法及方法原理,是指人们利用现有事物形成新事物,或是改变现有事物功能、性能的方法。技术应具备明确的使用范围和被其它人认知的形式和载体,

如原材料(输入)、产成品(输出)、工艺、工具、设备、设施、标准、规范、指标、计量方法等。技术与科学相比,技术更强调实用,而科学更强调研究;技术与艺术相比,技术更强调功能,艺术更强调表达。

引证解释

技艺;法术。《史记·货殖列传》:“医方诸食技术之人,焦神极能,为重糈也。”宋陆游《老学庵笔记》卷三:“忽有一道人,绝隐迟亦美风表,多技术…… 张若水 介之来谒。”

清侯方域《再与贾三兄书》:“盖足下之性好新异,喜技术,作之不必果成,成之不携困必果用,然凡可以尝试为之者,莫不为之。”Technology;Art;Skill;Technique在劳动生产方面的经验、知识和技巧,也泛指其他操作方面的技巧。

知识技能和操作技巧。周而复《上海的早晨并李》第一部七:“张学海是沪江纱厂保全部的青年工人,思想进步,对机器特别有兴趣,有空就钻研技术。”

李准《李双双小传》六:“两个人见面, 双双 总要说他们猪场的新鲜事。比如一个猪下了十个猪娃呀,人工授精的新技术呀。”

C. 大数据时代的三大技术支撑分别是

分布式处理技术

分布式处理系统可以将不同地点的或具有不同功能内的或拥有不同数据容的多台计算机用通信网络连接起来,在控制系统的统一管理控制下,协调地完成信息处理任务。比如Hadoop。

云技术

大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。

存储技术

大数据可以抽象地分为大数据存储和大数据分析,这两者的关系是:大数据存储的目的是支撑大数据分析。到目前为止,还是两种截然不同的计算机技术领域:大数据存储致力于研发可以扩展至PB甚至EB级别的数据存储平台;大数据分析关注在最短时间内处理大量不同类型的数据集。

D. 大数据三大核心技术:拿数据、算数据、卖数据!

大数据的由来

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

1

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大数据的应用领域

大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。

制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。

互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。

城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。

体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。

安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。

个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC

Logstash

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

Zookeeper

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Ku

Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。

数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求

数据查询分析

Hive

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark

Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

简单说有三大核心技术:拿数据,算数据,卖数据。

E. 发展“大数据”聚焦三大问题

发展“大数据”聚焦三大问题

当前,对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态正快速发展。而为了进一步促进“大数据”的发展,日前,国务院印发了《大数据发展行动纲要》(以下简称《纲要》),聚焦三大问题,成为“大数据”未来发展的指南。
焦点一:加快政府数据开放共享
《纲要》指出,要加快政府数据开放共享,推动资源整合,提升治理能力。即要大力推动政府部门数据共享,稳步推动公共数据资源开放,统筹规划大数据基础设施建设,支持宏观调控科学化,推动政府治理精准化,推进商事服务便捷化,促进安全保障高效化,加快民生服务普惠化。
从整体上看,政府数据的开放程度相较以前有了明显好转。在数据公开方式上,已经由纸质文件转为线上线下结合,除了相应的官方网站外,还有微信、微博等线上平台与群众进行互动答疑。在数据公开内容上,由此前“不解渴”的数据逐渐转向群众所需求的数据,达到真正的急人之所急、需人之所需。
然而,“数据平台”、“信息共享”、“互联互通”等词汇虽频频被政策文件提及,但实际上,仅仅是政府各部门间的数据共享就未能得到全面普及,从群众的反馈上可见一斑。
购房时客户需要填报十几张表格,其中表格的重复率高达30%;办理证件时需要来往各个部门开具相应证明,群众为此跑断腿;不同区域、不同部门的政府数据实现分割、垄断式管理,产生一个个“数据孤岛”,从而影响其社会服务效率。
由此可见,要实现政府各部门间的数据共享仍有很长一段路要走。虽然不同部门规则不一、层次不一等多方面原因造成了“数据孤岛”,但破除“数据孤岛”也是发展“大数据”的首要任务。因此,加快政府数据开放共享无疑是亮点之一,也是社会群众所迫切需求的。
对于如何加快政府数据开放共享,《纲要》也提出若干措施,如加强顶层设计和统筹规划,明确各部门数据共享的范围边界和使用方式;厘清各部门数据管理及共享的义务和权利,依托政府数据统一共享交换平台;大力推进国家人口基础信息库等国家基础数据资源,以及金税、金关、金财等信息系统跨部门、跨区域共享;加快各地区、各部门、各有关企事业单位及社会组织信用信息系统的互联互通和信息共享,丰富面向公众的信用信息服务,提高政府服务和监管水平等。
焦点二:推动产业创新发展
《纲要》指出,要推动产业创新发展,培育新兴业态,助力经济转型。即要发展工业大数据、新兴产业大数据、农业农村大数据、万众创新大数据,推进基础研究和核心技术攻关,形成大数据产品体系,完善大数据产业链。
当前,新兴产业对推动经济发展、助力经济转型有着重要作用。然而,也正因为它是新兴产业,所以拥有的资源比传统产业少,发展环境也不如传统产业。“大数据”的发展则能有效弥补新兴产业缺少资源的短处,故而发展“大数据”能变相推动产业创新发展,亦能改变新兴产业的盈利模式。
以发展万众创新大数据为例,对于初次创业的创客们,实施大数据创新行动计划,鼓励企业和公众发掘利用开放数据资源,无疑能激发创新创业活力,减少许多不必要的创业弯路。
同时,利用大数据、云计算等技术,对各领域知识进行大规模整合,搭建层次清晰、覆盖全面、内容准确的知识资源库群,亦能为创客们提供精准、高水平的知识服务,避免跨界发展的创客遇到知识盲区等。
此外,许多互联网模式下的新兴产业也可利用相应的网络平台积累自己的大数据,以自己的大数据衍生出其他服务,形成不同的盈利模式,百花齐放。
焦点三:强化安全保障
《纲要》指出,要强化安全保障,提高管理水平,促进健康发展。即要建立大数据安全评估体系,健全大数据安全保障体系,明确数据采集、传输、存储、使用、开放等各环节保障网络安全的范围边界、责任主体和具体要求,强化安全支撑。
在信息化的时代,数据应用无处不在,数据的安全问题也随之层出不穷。仅以个人数据为例,在消费途径多样化的大环境下,个人数据被留存在各种渠道上。从管理资金的金融系统到出行旅游的交通系统,再到快捷消费的电子商务平台,个人数据无处不在,而要保护这些数据不被非法利用,则是难上加难。
然而,要发展“大数据”,就必须对数据的安全有所保障,营造一个安全的数据流通环境。一方面要在数据的获取、存储、使用等方面进行有效保障,如加大“大数据”安全保障体系建设、建立网络安全信息共享机制等;另一方面也要完善相关法律,利用法律的牙齿来进行刑事责任约束,对非法利用数据等违法行为加大惩处力度。
对此,《纲要》也提出举措和目标,即在涉及国家安全稳定的领域采用安全可靠的产品和服务,到2020年,实现关键部门的关键设备安全可靠。完善网络安全保密防护体系。建设国家网络安全信息汇聚共享和关联分析平台,促进网络安全相关数据融合和资源合理分配,提升重大网络安全事件应急处理能力等。

以上是小编为大家分享的关于发展“大数据”聚焦三大问题的相关内容,更多信息可以关注环球青藤分享更多干货

F. 大数据挖掘的三个关键

大数据挖掘的三个关键:首先是大数据,即海量数据,他相当于土地资源、矿产资源,含有丰富的信息、价值,重点在于其来源、领域,不同的采集方式、采集来源含的信息和方向不同,同时他还涉及标准和存储;其次是思维,即分析数据的思路,包括模式、方向和创新等;第三是技术,即处理数据的技术,是数据处理的手段,包括算法、算力、建模.每个时期他们的价值不同,大数据发展的初期思维和技术的价值大;发展的中期,三者同等重要;发展的成熟期,数据的价值更大。

G. 大数据的数据科学与关键技术是什么

对于大数据想必大家都有所了解了吧?随着信息化的不断发展,大数据也越来越被人们所熟知。我们都知道,现在很多行业都离不开数据分析,在数据分析中我们有听说了大数据,大数据涉及到了很多的行业,一般来说,大数据涉及到了金融、交通、医疗、安全、社交、电信等等。由此可见,大数据面向的方向有很多,面向的范围很广。我们可以把大数据比喻成一个大容器,很多的东西都能够装在这个大容器中,但是大数据都是有一些技术组成的,那么大数据的数据科学和关键技术都是什么呢?在这篇文章我们就给大家解答一下这个问题。
通常来说,大数据的数据采集是通过传感器、智能终端设备、数据储存这三个方面组成,而通过传感器的大数据离不开物联网,通过智能终端的大数据离不开互联网,而数据的海量储存离不开云计算,最重要的就是大数据的计算分析采用机器学习,大数据的互动展示离不开可视化,所以我们需要知道大数据的数据科学和关键技术,只有这样我们才能够用好大数据。
首先我们来说说数据科学,数据科学可以理解为一个跨多学科领域的,从数据中获取知识的科学方法,技术和系统集合,其目标是从数据中提取出有价值的信息,它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,人工智能,深度学习,数据可视化,数据挖掘,数据仓库,以及高性能计算等。很多的领域都是离不开数据科学的。
那么数据科学的过程是什么呢?一般来说,数据科学的过程就是有原始数据采集,数据预处理和清洗,数据探索式分析,数据计算建模,数据可视化和报表,数据产品和决策支持等内容,而传统信息化技术多是在结构化和小规模数据上进行计算处理,大数据时代呢,数据变大了,数据多源异构了,需要智能预测和分析支持了,所以核心技术离不开机器学习、数据挖掘、人工智能等,另外还需考虑海量数据的分布式存储管理和机器学习算法并行处理,所以数据的大规模增长客观上促进了数据科学技术生态的繁荣与发展,包括大数据采集、数据预处理、分布式存储、MySQL数据库、多模式计算、多模态计算、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。由此可见大数据是一门极度专业性的学科。
在这篇文章中我们给大家介绍了数据科学的关键技术的实际内容,大数据的数据科学的关键技术有很多,我们需要学习很多的知识,这样我们才能够触类旁通,让大数据更好地为我们服务。

H. 大数据的关键技术有哪些_大数据处理的关键技术有哪些

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分早李烂析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方扰帆式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据陆漏并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

四、大数据分析及挖掘技术

大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统)本回答根据网络文库资料整理,原文请参见《大数据关键技术》

阅读全文

与大数据三个重要的技术问题相关的资料

热点内容
苹果6手机上传不了照片 浏览:317
win10不能玩codol 浏览:758
ps怎么在文件上加文字 浏览:376
手机网站幻灯片代码 浏览:549
上海云动网络 浏览:435
无效的ps文件什么意思 浏览:522
中国移动app如何查家庭网 浏览:699
微信显示未注册 浏览:977
粒子汇聚图像教程 浏览:619
pdf文件能替换图片 浏览:727
制表位不居中word 浏览:265
dell驱动盘装驱动程序 浏览:577
编程中如何创建密码 浏览:135
林纳斯托瓦兹使用什么编程语言 浏览:132
安卓qq不能指纹支付密码 浏览:476
sap原因代码 浏览:242
数据反馈有什么好处 浏览:502
iphone4612激活 浏览:466
兰州电信宽带升级 浏览:317
linux内核所有进程共享 浏览:901

友情链接