导航:首页 > 网络数据 > 大数据matplotlib

大数据matplotlib

发布时间:2023-06-28 04:02:35

㈠ 男生学习大数据好点还是python好点

首先大数据是一个行业或者业务领域专业方向,而python则是一门计算机开发语言,下面我详细介绍他们的具体内涵:

大数据专业或行业方向是指研究或学习如何采用不同属于传统的新的技术或者方法处理海量的业务数据,并且能够通过数据分析获得新的知识,并且带来新的巨大价值,因此大数据一定是和云计算结合学习和研究,大数据方向主要学习的内容包括数据库技术和数据分析和数据挖掘技术。大数据的实现基础是主要为数理统计。大数据分析目前已经普遍应用于商业、服务、 社会 管理等领域,这次疫情期间大数据技术对于我们国家的疫情控制就起到了至关重要的作用,生活中不管是美团、淘宝都在使用大数据技术实现客户的精准服务,我们阿谱云教育团队也是基于历年来陕西高考中大学及专业报考大数据为陕西的家长和考生每年提供的精准分析和报考服务。

Python是一种解释型脚本语言,可以应用于以下领域:Web 和 Internet开发、科学计算和统计、人工智能、桌面界面开发、软件开发、后端开发、网络爬虫等等。众多开源的科学计算软件包都提供了Python的调用接口,例如著名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。因此Python是大数据开发使用最好的工具之一。

如果从专业选择角度,那么还是选择大数据方向,和就业方向直接关联。因为python只是一个开发工具,学习开发工具的目的是为了就业,是为了在某一行业领域应用,如果只是看到很多媒体在介绍,只是感兴趣那另当别论。

你要明白大数据范围超级广,你具体想要学习哪个方向呢?数据挖掘?还是机器学习深度学习?亦或nlp(自然语言处理)?(我主要学数据挖掘,呜啦啦啦)
我给所有问我大数据该怎么入门的人都会有如下建议:学好数学!学好数学!学好数学!重要的事说三遍,不然你怎么理解各种模型的构建?所以从理解算法开始,什么svn啦,knn啦,k means啦,总之各种聚类分类的算法,把它搞懂,绝对有用。
扯远了,不好意思…言归正传,回到语言的选择问题。java和python这两个语言,我给你从这几个方面解释一下:
1. python是脚本语言,无需编译,java则是需要编译的语言
2. 我在letitcode(大概是这么拼)上测试过好多次,同一个功能的程序竟然是java性能好很多
3. 平时我们做项目,都是用python写个demo去测试,真正发行的版本,是用java写的
4. 许多大数据平台(如spark),都提供多种语言的接口,所以你不用担心学一种语言没处用的问题

看到了吧?python和java的地位差别在企业中就是一个低一个高,以我个人的观点来看,我还是建议你先学python。1. 很多java中几行的代码,python中一行就搞定,学会了python,还怕学不会java?2. python上手快,简洁事儿少3. (个人经验)我学数据挖掘入门是用的scikit-learn(一个python库),当时用的超爽的好吧!几分钟搞个模型出来。当然现在看来那不算什么啦,可当时真的体验很好,特有成就感。相反拿java写程序我就各种别扭,总觉得啰嗦得很4. 其实,我觉得scala更适合大数据…linkedin后台好像就是它写的,但是我觉得scala难,再加上种种原因,一直没来得及学

你要明白大数据范围超级广,你具体想要学习哪个方向呢?数据挖掘?还是机器学习深度学习?亦或nlp(自然语言处理)?(我主要学数据挖掘,呜啦啦啦)我给所有问我大数据该怎么入门的人都会有如下建议:学好数学!学好数学!学好数学!重要的事说三遍,不然你怎么理解各种模型的构建?所以从理解算法开始,什么svn啦,knn啦,k means啦,总之各种聚类分类的算法,把它搞懂,绝对有用。

㈡ python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)

Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。

Python数据分析与挖掘技术概述

所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。

预先善其事必先利其器

我们首先聊聊数据分析的模块有哪些:

下面就说说这些模块的基础使用。

numpy模块安装与使用

安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy

numpy简单使用

生成随机数

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:

常用方法如下:

下面看看pandas对数据的统计,下面就说说每一行的信息

转置功能:把行数转换为列数,把列数转换为行数,如下所示:

通过pandas导入数据

pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。

CSV文件

csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列

excel表格

依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数

读取SQL

依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。

读取HTML

依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取

显示的是时候是通过python的列表展示,同时添加了行与列的标识

读取txt文件

输出显示的时候同时添加了行与列的标识

scipy

安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 数据可视化分析

我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。

下面请看代码:

下面说说修改图的样式

关于图形类型,有下面几种:

关于颜色,有下面几种:

关于形状,有下面几种:

我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:

我们还可以画虚线图,代码如下所示:

还可以给图添加上标题,x,y轴的标签,代码如下所示

直方图

利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。

Y轴为出现的次数,X轴为这个数的值(或者是范围)

还可以指定直方图类型通过histtype参数:

图形区别语言无法描述很详细,大家可以自信尝试。

举个例子:

子图功能

什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:

我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。


先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。


我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。

下面看看代码:

㈢ Python大数据, 一些简单的操作

#coding:utf-8
#file: FileSplit.py

import os,os.path,time

def FileSplit(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
number = 100000 #每个小文件中保存100000条数据
dataLine = sFile.readline()
tempData = [] #缓存列表
fileNum = 1
if not os.path.isdir(targetFolder): #如果目标目录不存在,则创建
os.mkdir(targetFolder)
while dataLine: #有数据
for row in range(number):
tempData.append(dataLine) #将一行数据添加到列表中
dataLine = sFile.readline()
if not dataLine :
break
tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + str(fileNum) + ".txt")
tFile = open(tFilename, 'a+') #创建小文件
tFile.writelines(tempData) #将列表保存到文件中
tFile.close()
tempData = [] #清空缓存列表
print(tFilename + " 创建于: " + str(time.ctime()))
fileNum += 1 #文件编号

sFile.close()

if __name__ == "__main__" :
FileSplit("access.log","access")
#coding:utf-8
#file: Map.py

import os,os.path,re

def Map(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
dataLine = sFile.readline()
tempData = {} #缓存列表
if not os.path.isdir(targetFolder): #如果目标目录不存在,则创建
os.mkdir(targetFolder)
while dataLine: #有数据
p_re = re.compile(r'(GET|POST)\s(.*?)\sHTTP/1.[01]',re.IGNORECASE) #用正则表达式解析数据
match = p_re.findall(dataLine)
if match:
visitUrl = match[0][1]
if visitUrl in tempData:
tempData[visitUrl] += 1
else:
tempData[visitUrl] = 1
dataLine = sFile.readline() #读入下一行数据

sFile.close()

tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + "_map.txt")
tFile = open(tFilename, 'a+') #创建小文件
tFile.writelines(tList) #将列表保存到文件中
tFile.close()

if __name__ == "__main__" :
Map("access\\access.log1.txt","access")
Map("access\\access.log2.txt","access")
Map("access\\access.log3.txt","access")
#coding:utf-8
#file: Rece.py

import os,os.path,re

def Rece(sourceFolder, targetFile):
tempData = {} #缓存列表
p_re = re.compile(r'(.*?)(\d{1,}$)',re.IGNORECASE) #用正则表达式解析数据
for root,dirs,files in os.walk(sourceFolder):
for fil in files:
if fil.endswith('_map.txt'): #是rece文件
sFile = open(os.path.abspath(os.path.join(root,fil)), 'r')
dataLine = sFile.readline()

while dataLine: #有数据
subdata = p_re.findall(dataLine) #用空格分割数据
#print(subdata[0][0]," ",subdata[0][1])
if subdata[0][0] in tempData:
tempData[subdata[0][0]] += int(subdata[0][1])
else:
tempData[subdata[0][0]] = int(subdata[0][1])
dataLine = sFile.readline() #读入下一行数据

sFile.close()

tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(sourceFolder,targetFile + "_rece.txt")
tFile = open(tFilename, 'a+') #创建小文件
tFile.writelines(tList) #将列表保存到文件中
tFile.close()

if __name__ == "__main__" :
Rece("access","access")

㈣ 大数据用什么语言开发

目前全世界的开发人员,编码人员和软件工程师都使用许多编程语言。根据一项调查,计算机语言的总数总计达9000种。但是,如今,其中只有50种编程语言是首选。

编程语言会根据大数据和AI等行业而有所不同。科技市场由大数据主导,因此,如果作为大数据专业人士,必须学习最重要的编程语言。


大数据中最喜欢的编程语言:

Python

Python在全球拥有500万用户,目前被其视为开发人员最常用的编程语言之一。让我们感受到Python是未来流行编程的是,世界上一些成功的公司选择Python编程语言进行产品开发,比如:NASA,Google,Instagram,Spotify,Uber,Netflix,Dropbox,Reddit和Pinterest,而且初学者和专业人员都认为Python是一种功能强大的语言。

Python由Guido van Rossum于1991年开发,Python成为程序员第一个学习入门级编程语言。

Python最适合针对大数据职业的技术专业人员,将在数据分析,Web应用程序或统计代码与生产数据库集成一起时,Python成为了最佳选择。此外,它还具有强大的库软件包作为后盾,可帮助满足大数据和分析需求,使其成为大数据爱好者的首选。Pandas,NumPy,SciPy,Matplotlib,Theano,SymPy,Scikit学习是大数据中最常用的一些库。

R

R编程语言为数据表示提供了多种图形功能,例如条形图,饼图,时间序列,点图,3D表面,图像图,地图,散点图等。借助R语言,可以轻松地自定义图形并开发新鲜个性的图形。

R语言由Ross Ihaka和Robert Gentleman编写;但是,它现在是由R开发核心团队开发的。它是一种可编程语言,有助于有效地存储和处理数据。R不是数据库,而是一种可以轻松连接到数据库管理系统(DBMS)的语言。R可以轻松连接到excel和MS Office,但它本身不提供任何电子表格数据视图。编程语言是数据分析的理想选择,它有助于访问分析结果的所有领域,并与分析方法结合使用,从而得出对公司重要的肯定结论。

Scala

Scala是金融行业主要使用的一种开源高级编程语言。Scala特点是可确保其在大数据可用性方面的重要性。

Apache Spark是用于大数据应用程序的集群计算框架,是用Scala编写的。大数据专业人员需要在Scala中具有深入的知识和动手经验。

Java

Java进入技术行业已有一段时间了,自Java诞生以来,它就以其在数据科学技术中的多功能性而闻名。值得注意的是,用于处理和存储大数据应用程序的开源框架Hadoop HDFS已完全用Java编写。Java被广泛用于构建各种ETL应用程序,例如Apache,Apache Kafka和Apache Camel等,这些应用程序用于运行数据提取,数据转换以及在大数据环境中的加载。

收入最高的编程语言

根据Stack Overflow的调查,Scala,Go和Objective-C是目前丰厚报酬的编程语言。

㈤ 大数据可视化中numpy库有哪些作用

您好,你的问来题,我之前好像也源遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!Seaborn是一个Python中用于创建信息丰富和有吸引力的统计图形库。这个库是基于matplotlib的。
Seaborn提供多种功能,如内置主题、调色板、函数和工具,来实现单因素、双因素、线性回归、数据矩阵、统计时间序列等的可视化,以让我们来进一步构建复杂的可视化。非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!

㈥ 如何用python进行大数据挖掘和分析

毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指数级增长。这种消费数据对于想要更好地定位目标客户、弄懂人们怎样使用他们的产品或服务,并且通过收集信息来提高利润的公司来说无疑是个金矿。
筛查数据并找到企业真正可以使用的结果的角色落到了软件开发者、数据科学家和统计学家身上。现在有很多工具辅助大数据分析,但最受欢迎的就是Python。
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼,和索尼梦工厂。还有,Python是开源的,并且有很多用于数据科学的类库。所以,大数据市场急需Python开发者,不是Python开发者的专家也可以以相当块速度学习这门语言,从而最大化用在分析数据上的时间,最小化学习这门语言的时间。
用Python进行数据分析之前,你需要从Continuum.io下载Anaconda。这个包有着在Python中研究数据科学时你可能需要的一切东西。它的缺点是下载和更新都是以一个单元进行的,所以更新单个库很耗时。但这很值得,毕竟它给了你所需的所有工具,所以你不需要纠结。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要成为一个Python开发者。这并不意味着你需要成为这门语言的大师,但你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
各种类库
当你掌握了Python的基本知识点后,你需要了解它的有关数据科学的类库是怎样工作的以及哪些是你需要的。其中的要点包括NumPy,一个提供高级数学运算功能的基础类库,SciPy,一个专注于工具和算法的可靠类库,Sci-kit-learn,面向机器学习,还有Pandas,一套提供操作DataFrame功能的工具。
除了类库之外,你也有必要知道Python是没有公认的最好的集成开发环境(IDE)的,R语言也一样。所以说,你需要亲手试试不同的IDE再看看哪个更能满足你的要求。开始时建议使用IPython Notebook,Rodeo和Spyder。和各种各样的IDE一样,Python也提供各种各样的数据可视化库,比如说Pygal,Bokeh和Seaborn。这些数据可视化工具中最必不可少的就是Matplotlib,一个简单且有效的数值绘图类库。
所有的这些库都包括在了Anaconda里面,所以下载了之后,你就可以研究一下看看哪些工具组合更能满足你的需要。用Python进行数据分析时你会犯很多错误,所以得小心一点。一旦你熟悉了安装设置和每种工具后,你会发现Python是目前市面上用于大数据分析的最棒的平台之一。
希望能帮到你!

㈦ 朋友想学习大数据,有哪里可以学习呢

大数据也是最近几年才火起来的学科,之前发展一直是不瘟不火的,可能是和这些年高速发展是互联网有一定的关系的。

目前想要学习大数据建议还是去一线城市进行学习的比较好,大数据是属于高度技术行业,在二三线城市现在发展得还不是很好,大多数的大企业都是在一线城市,所以很多技术都是出现在一线城市的。

选择去北京学习大数据确实非常不错,因为现在大数据发展比较好的地方也就是北上广这样的地方。而且在这里也是大数据培训机构比较集中的地方,这里的机构有很多,其中相对比较专业的机构也有很多,大家可以选择到的几率也比较高。

具体的大家可以通过机构的师资、课程、学习环境以及就业情况等多方面的内容去对比选择,我相信总有一家是比较适合你的。

如果,确定了想要到北京学习大数据技术的话,大家可以到尚硅谷来进行了解一下。

学习大数据之前建议献血好计算机基础知识,否则如同聚沙成塔一般根基不稳。

具体到大数据本身,建议先掌握一些基本的工具,例如hive,Hadoop,hbase,es等,先做一些简单的数据分析。

个人学习经验,如果是我会先选择找一本入门的大数据相关的书籍,通读一遍,建立对大数据的一个概念。然后可以到b站或者慕课网等学习网站找视频资源,这类视频也有深有浅,看自己当时的情况有选择的看。最后,你想要更近一步的探究大数据,就应该找更专业的书籍或论文去研读,这一类论文可以到知网或者谷歌文献去找。

一、如何将商业运营问题转化为大数据挖掘问题

那么,问题来了,我们该如何把上述的商业运营问题转化为数据挖掘问题?可以对数据挖掘问题进行细分,分为四类问题:分类问题、聚类问题、关联问题、预测问题。

1、分类问题

用户流失率、促销活动响应、评估用户度都属于数据挖掘的分类问题,我们需要掌握分类的特点,知道什么是有监督学习,掌握常见的分类方法:决策树、贝叶斯、KNN、支持向量机、神经网络和逻辑回归等。

2、聚类问题

细分市场、细分客户群体都属于数据挖掘的聚类问题,我们要掌握聚类特点,知道无监督学习,了解常见的聚类算法,例如划分聚类、层次聚类、密度聚类、网格聚类、基于模型聚类等。

3、关联问题

交叉销售问题等属于关联问题,关联分析也叫购物篮分析,我们要掌握常见的关联分析算法:Aprior算法、Carma算法,序列算法等。

4、预测问题

我们要掌握简单线性回归分析、多重线性回归分析、时间序列等。

二、用何种工具实操大数据挖掘

能实现数据挖掘的工具和途径实在太多,SPSS、SAS、Python、R等等都可以,但是我们需要掌握哪个或者说要掌握哪几个,才算学会了数据挖掘?这需要看你所处的层次和想要进阶的路径是怎样的。

第一层级:达到理解入门层次

了解统计学和数据库即可。

第二层级:达到初级职场应用层次

数据库+统计学+SPSS(也可以是SPSS代替软件)

第三层级:达到中级职场应用层次

SAS或R

第四层级:达到数据挖掘师层次

SAS或R+Python(或其他编程语言)

三、如何利用Python学习大数据挖掘

只要能解决实际问题,用什么工具来学习数据挖掘都是无所谓,这里首推Python。那该如何利用Python来学习数据挖掘?需要掌握Python中的哪些知识?

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

pandas 分组计算;

pandas 索引与多重索引;

索引比较难,但是却是非常重要的

pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

Numpy array理解;

数组索引操作;

数组计算;

Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

seaborn的使用

seaborn是一个非常漂亮的可视化工具。

pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

机器学习的定义

在这里跟数据挖掘先不做区别

代价函数的定义

Train/Test/Validate

Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

最小二乘算法;

梯度下降;

向量化;

极大似然估计;

Logistic Regression;

Decision Tree;

RandomForesr;

XGBoost;

6、数据挖掘实战

通过机器学习里面最著名的库scikit-learn来进行模型的理解。

以上,就是为大家理清的大数据挖掘学习思路逻辑。可是,这还仅仅是开始,在通往数据挖掘师与数据科学家路上,还要学习文本处理与自然语言知识、Linux与Spark的知识、深度学习知识等等,我们要保持持续的兴趣来学习数据挖掘。

网易云课堂

㈧ 如何用Python进行大数据挖掘和分析

如何用Python进行大数据挖掘和分析?快速入门路径图
大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都有可能会遇到它。
什么是 大数据 ?
大数据就像它看起来那样——有大量的数据。单独而言,你能从单一的数据获取的洞见穷其有限。但是结合复杂数学模型以及强大计算能力的TB级数据,却能创造出人类无法制造的洞见。大数据分析提供给商业的价值是无形的,并且每天都在超越人类的能力。
大数据分析的第一步就是要收集数据本身,也就是众所周知的“数据挖掘”。大部分的企业处理着GB级的数据,这些数据有用户数据、产品数据和地理位置数据。今天,我将会带着大家一起探索如何用 Python 进行大数据挖掘和分析?
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼等。还有,Python是开源的,并且有很多用于数据科学的类库。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
数据分析流程
一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:
数据获取:公开数据、Python爬虫
外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
总结
其实做数据挖掘不是梦,5步就能让你成为一个Python爬虫高手!

阅读全文

与大数据matplotlib相关的资料

热点内容
苹果6手机上传不了照片 浏览:317
win10不能玩codol 浏览:758
ps怎么在文件上加文字 浏览:376
手机网站幻灯片代码 浏览:549
上海云动网络 浏览:435
无效的ps文件什么意思 浏览:522
中国移动app如何查家庭网 浏览:699
微信显示未注册 浏览:977
粒子汇聚图像教程 浏览:619
pdf文件能替换图片 浏览:727
制表位不居中word 浏览:265
dell驱动盘装驱动程序 浏览:577
编程中如何创建密码 浏览:135
林纳斯托瓦兹使用什么编程语言 浏览:132
安卓qq不能指纹支付密码 浏览:476
sap原因代码 浏览:242
数据反馈有什么好处 浏览:502
iphone4612激活 浏览:466
兰州电信宽带升级 浏览:317
linux内核所有进程共享 浏览:901

友情链接