以中大咨询的大数据分析生态系统与专业的咨询服务为例,企业可以依托构建起的双渠道数据分析与决策系统,进一步降低大数据分析系统部署和应用的难度,发挥统一数据架构的优势,有效完成基于数据驱动的企业生产经营活动分析与决策转型。具体有以下几个方面:
(1)数据抓取系统:及时捕获网络信息数据,为客户提供外部经营环境持续、海量的数据服务
(2)在线数据采集系统:针对企业的在线客户,从用户属性信息、用户行为信息、商品信息等多维度进行采集,并通过数据过滤与汇总,将数据分类存于数据仓库中,满足IT业务不同需求,为企业提供持续性的数据资产。
(3)数据融合系统:围绕构建企业用户的全维度标签,完善的数据管理及输出流程,全面整合企业内外数据源,尤其是对异构数据处理,支撑各类数据应用。
Ⅱ 大数据计算体系的基本层次是什么
大数据计算系统可以概括为三个基本层次:数据应用系统、数据处理系统和数据存储系统。 计算的歼模整体架构。HDFS (Hadoop分布式文件系统)(1)设计思路:分而治之,将大文件以分布式的方式存储在大量的服务器中,以分而治之的方式方便海量数据的计算和分析。(2)首先,它是一个文件系统,用于存储文件,并通过统咐改氏一的命名空间-目录树进行定位。然后,它是分布式的,很多服务器联合起来实现衡散它的功能。集群中的服务器有自己的角色。有两个部分,namenode和datanode,有点类似于索引结构,并且是备份的。例如,第二个namenode和b1出现了三次。总之,小数据大采集是一种在二级内存中采集存储部分数据的方式。这种数据集也有一定的特点,比如尽量不重复。
Ⅲ 大数据有什么技术,大数据技术内容介绍
大数据是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的数据挖掘专、云计算属一类的,所以是计算机一类的专业。分布比较广,应用行业较多。
零售业:主要集中在客户营销分析上,通过大数据技术可以对客户的消费信息进行分析。获知客户的消费习惯、消费方向等,以便商场做好更合理商品、货架摆放,规划市场营销方案、产品推荐手段等。
金融业:在金融行业里头,数据即是生命,其信息系统中积累了大量客户的交易数据。通过大数据可以对客户的行为进行分析、防堵诈骗、金融风险分析等。
医疗业:通过大数据可以辅助分析疫情信息,对应做出相应的防控措施。对人体健康的趋势分析在电子病历、医学研发和临床试验中,可提高诊断准确性和药物有效性等。
制造业:该行业对大数据的需求主要体现在产品研发与设计、供应链管理、生产、售后服务等。通过数据分析,在产品研发过程中免除掉一些不必要的步骤,并且及时改善产品的制造与组装的流程。
Ⅳ 大数据系统架构
转: https://www.sohu.com/a/227887005_487103
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于Hadoop系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以BI系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于BI系统来说,大概的架构图如下:
总的来说,目前围绕Hadoop体系的大数据架构大概有以下几种:
传统大数据架构
Lambda架构算是大数据系统里面举足轻重的架构,大多数架构基本都是Lambda架构或者基于其变种的架构。Lambda的数据通道分为两条分支:实时流和离线。实时流依照流式架构,保障了其实时性,而离线则以批处理方式为主,保障了最终一致性。什么意思呢?流式通道处理为保障实效性更多的以增量计算为主辅助参考,而批处理层则对数据进行全量运算,保障其最终的一致性,因此Lambda最外层有一个实时层和离线层合并的动作,此动作是Lambda里非常重要的一个动作
优点: 既有实时又有离线,对于数据分析场景涵盖的非常到位。
缺点: 离线层和实时流虽然面临的场景不相同,但是其内部处理的逻辑却是相同,因此有大量荣誉和重复的模块存在。
适用场景: 同时存在实时和离线需求的情况。
Kappa架构
Unifield架构
总结
以上几种架构为目前数据处理领域使用比较多的几种架构,当然还有非常多其他架构,不过其思想都会或多或少的类似。数据领域和机器学习领域会持续发展,以上几种思想或许终究也会变得过时。
Ⅳ 如何打造高性能大数据分析平台
大数据分析系统作为一个关键性的系统在各个公司迅速崛起。但是这种海量规模的数据带来了前所未有的性能挑战。同时,如果大数据分析系统无法在第一时间为运营决策提供关键数据,那么这样的大数据分析系统一文不值。本文将从技术无关的角度讨论一些提高性能的方法。下面我们将讨论一些能够应用在大数据分析系统不同阶段的技巧和准则(例如数据提取,数据清洗,处理,存储,以及介绍)。本文应作为一个通用准则,以确保最终的大数据分析平台能满足性能要求。1.大数据是什么?大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5Vs。分别是大规模,多样性,高效性、准确性和价值性。互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一“。高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。2.大数据系统应包含的功能模块大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析??,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。下图描述了大数据系统的这些高层次的组件描述本节的其余部分简要说明了每个组分,如图1。2.1各种各样的数据源当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP/XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。2.2数据采集第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。2.3存储数据第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。2.4数据处理和分析第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。2.5数据的可视化和数据展示最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。3.数据采集中的性能技巧数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。数据采集??过程基于对该系统的个性化需求,但一些常用执行的步骤是-解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。涉及数据采集过程的逻辑步骤示如下图所示:下面是一些性能方面的技巧:来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。如果数据是从feedfile解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,jsON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB/应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。谨慎选择一个能够最大限度的满足需求的解决方案。4.数据存储中的性能技巧一旦所有的数据采集步骤完成后,数据将进入持久层。在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。数据库分为行存储和列存储。具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性?这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase使用HDFS)。这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。5.数据处理分析中的性能技巧数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。在细节评估和数据格式和模型后选择适当的数据处理框架。其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。有些框架擅长高度并行计算,这样能够大大提高数据效率。基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业?在数据分块是需要当心。该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。不要忘了查看一个任务的作业总数。在必要时调整这个参数。最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。这意味着你可能需要存储原始数据的时间较长,因此需要的存储。数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。实时监控系统的性能,这样能够帮助你预估作业的完成时间。6.数据可视化和展示中的性能技巧精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。物化视图是可以提高性能的另一个重要的技术。大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好法。尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。保持像图形,图表等使用最小的尺寸。大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。7.数据安全以及对于性能的影响像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。-首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。-数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。-您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。-通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。-针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。-同样,评估加密逻辑和算法,然后再选择。-明智的做法是敏感信息始终进行限制。-在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。-注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。-尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。8.总结本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。
Ⅵ 如何架构大数据系统 hadoop
大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
Ⅶ 《大数据修炼系统》txt下载在线阅读全文,求百度网盘云资源
《大数据修炼系统》网络网盘txt最新全集下载:
链接:https://pan..com/s/1YPZlQMeJwIvFteITSXxP9w
Ⅷ 大数据系统有哪些
大数据可视化系统(一)思迈特软件Smartbi
思迈特软件Smartbi是一款商业智能BI工具,做数据分析和可视化数据展现,以分析为主,提供多种数据接入方式,可视化功能强大,平台更适合掌握分析方法了解分析的思路的用户,其他用户的使用则依赖于分析师的结果输出。
Smartbi也是小编找了很久感觉很不错的一款大数据可视化系统。其中还有很多对数据处理的公式和方法,图表也比较全面。相对于网络的echarts,Smartbi还是一款比较容易入手的数据分析工具。最后,Smartbi提供了免费的版本,功能齐全,更加适合个人对数据分析的学习和使用。
大数据可视化系统(二)ChartBlocks
ChartBlocks是一款网页版的大数据可视化系统,在线使用。通过导入电子表格或者数据库来构建可视化图表。整个过程可以在图表的向导指示下完成。它的图表在HTML5的框架下,使用强大的JavaScript库D3js来创建图表。
图表是响应式的,可以和任何的屏幕尺寸及设备兼容。还可以将图表嵌入任何网页中。
大数据可视化系统(三)Tableau
Tableau公司将数据运算与美观的图表完美地嫁接在一起。它的程序很容易上手,各公司可以用它将大量数据拖放到数字”画布”上,转眼间就能创建好各种图表。这一软件的理念是,界面上的数据越容易操控,公司对自己在所在业务领域里的所作所为到底是正确还是错误,就能了解得越透彻。
它们都是为与大数据有关的组织设计的。企业使用这个工具非常方便,而且提供了闪电般的速度。还有一件事对这个工具是肯定的,Tableau具有用户友好的特性,并与拖放功能兼容。但是在大数据方面的性能有所缺陷,每次都是实时查询数据,如果数据量大,会卡顿。
大数据可视化系统(四)AntV
AntV是蚂蚁金服的大数据可视化系统,主要包含专注解决流程与关系分析的图表库G6、适于对性能、体积、扩展性要求严苛场景下使用的移动端图表库F2以及一套完整的图表使用指引和可视化设计规范。
已为阿里集团内外2000+个业务系统提供数据可视化能力,其中不乏日均千万UV级的产品。
Ⅸ 如何架构大数据系统hadoop
大数据数量庞大,格式多样化。
大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。
它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。
因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。
随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。
这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。
因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。
应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。
数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。
在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。
其中分布式存储与计算受关注度最高。
上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。
大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。
批处理是先存储后处理,而流处理则是直接处理数据。
挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。
大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。
一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。
因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。
其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapRece(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Rece则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。
当处理大数据查询时,MapRece会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。
Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。
Hbase利用MapRece来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查操作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。
由MemStore和StoreFile组成。
HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。
于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。
基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。
丰富的数据源是大数据产业发展的前提。
数据源在不断拓展,越来越多样化。
如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。
对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。
然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。