『壹』 那些年,对“大数据”的预言
"那些年,对“大数据”的预言
随着信息与网络技术的飞速发展,我们已经进入一个“大数据”时代。大数据驱动着科学研究进入崭新的阶段,也推进了各行各业的发展。例如,精准的天气和空气质量预测依赖于机器学习和大数据分析技术的发展;各大银行通过大数据分析客户的经济能力;公安部门通过大数据分析各地区和各种人群的犯罪率,进而提前布控进行应对等等。
如今,大数据早已不再局限于科学和经济范畴内的使用,它已经进入人类生活的各个领域,对社会的方方面面都产生着积极、有效的影响。未来,以互联网和物联网大数据以及机器学习等为基础的人工智能技术,可能会引发一场新的工业革命。
而这种以数据分析为核心的计算模式,早在十年前,由微软亚洲研究院主办的“二十一世纪的计算”国际学术研讨会就对其进行了展望和预言。在那个Wintel联盟掌握信息技术世界、诺基亚和摩托罗拉是手机行业对峙竞争双雄的年代,移动互联网仅为雏形,但2005年的
“二十一世纪的计算”大会就以“无‘数’不在的计算”为主题,将未来计算的核心锁定在了“数据”上:
l
“以数据为核心的计算”正在改变着全球数亿计算机用户的体验。个人电脑、互联网上,“数据”无处不在。任何一种应用(服务)都是将“原始数据”处理为有价值的资讯。
l
计算机从巨型机、大型机到小型机,再到个人电脑和形形色色的便携式计算设备,“以应用为核心的计算”已趋向“以数据为核心的计算”的演进。用户关心的将是“如何提取和应用数据中有用的信息”,而不是“数据背后运行着何种应用程序”。“应用”隐于后台、“数据”处在核心,“以数据为核心的计算”已是大势所趋。
l
受制于有限的数据资源和软、硬件平台的性能,“以数据为核心的计算”仅仅停留在梦想的层面。而互联网上海量的、多样化的数据资源,高性能计算机、并行计算的主流化终将令梦想成真。在可以预见的未来,基于“以数据为核心的计算”,无论是生命科学,又或是互联网搜索、高信度计算,都将取得更大的突破和令人难以想象的发展。
身处十年后的今天,回头来看这些大会结论能发现,这些都是对时下火热的大数据计算的精确预见。随着互联网尤其是移动互联网的快速发展,无论是企业机构还是个人的数据,都实现了更加直接、便捷的获取,这使得数据量变得空前庞大且与时俱增,而得益于计算机技术的不断进步,在处理和分析海量数据时的技术门槛却变得越来越低——这一现状,与十年前大会上提到的“多样化的数据资源,高性能计算机”如出一辙。
大数据分析的发展,也推动了尖端计算机技术的演进。目前炙手可热的人工智能技术,就建立在大数据分析的基础之上——此前,人工智能相关研究遭遇的最大瓶颈是,人的逻辑思考模式几乎无法复制给机器,无论是将低阶的声音、影像、气味等信号升华到认知,还是把有共性的现象抽炼成规律,都不是机器所能掌握的技能——机器学习与大数据让人工智能研究者们看到了新的希望,更大规模的数据量和更少的假设、限制可以让机器用自己擅长的方式(数据存储、挖掘、分析)“思考”和成长,从而在实用化路途上走得更快更远;与此同时,借助机器的力量,人们可以在持续激增的大数据海洋里更快地由现象抽取出规律,由规律推导出结论。人工智能和大数据的结合将会越来越紧密,不久的未来,初步拥有了看、听、连接能力的多元化设备会反过来推动人工智能研究的跃进,因为更多的数据会让机器不断发现更准确的规律和更贴近事实的因果。
当然,曾经在“二十一世纪的计算”大会上被准确预言的计算机技术前景还有很多,因此今年以“人工智能无限可能”为主题的“二十一世纪的计算”国际学术研讨会也格外令人期待。大数据和机器学习技术的发展到底还能为人工智能研究带来怎样的变化,让我们期待全球顶尖科学家们所给出的精彩“预言”吧!
以上是小编为大家分享的关于那些年,对“大数据”的预言的相关内容,更多信息可以关注环球青藤分享更多干货
『贰』 大数据 从“技术驱动”转向“应用驱动”
大数据:从“技术驱动”转向“应用驱动”
继物联网、云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。大数据时代的来临,使得领域和行业边界愈加模糊,应用创新超越技术本身,生产模式向服务化转变,数据作为一种资产为企业带来新商业价值,数据开放让政府治理和个人福祉都面临着机遇和挑战……无论个人、企业组织、社会团体,还是国家和经济体,都能藉此实现大数据梦想。
当前,全球大数据产业正处于蓬勃发展的孕育期和机遇期。核心关键技术正在加快发展和更新换代,各类解决方案提供商加大力度宣传造势,尤其是围绕电信、航空、交通、生物、城市管理等重点领域描绘美好蓝图,力求推动行业应用和商业模式创新,抢占产业增长点。与此同时,小微企业和创业者对大数据热情高涨,期望借此机会实现高速成长的梦想。由于整个大数据产业开始转向应用创新阶段,高成长的预期让各方都对未来抱以乐观的态度。
从“技术驱动”转向“应用驱动”
作为一个独立的产业,大数据的产业体系框架表现为“两纵三横”:“两纵”基于技术的基础程度,分为底层技术和应用层技术,前者是共性、基础性技术,如Hadoop框架、Hbase数据库、Mahout算法集等;后者是“二次开发”行为,包括各类个性化方案、产品与服务。“三横”基于处理的流程顺序,分为基础设施、分析系统和应用工具,也可进一步细化为数据的采集、存储、处理、分析、服务五方面。目前,“两纵三横”的产业体系已经趋于成熟,能够应对绝大多数的产业应用需求。
广义的大数据应用本质上是一种“增值分析”,前景有着近似无限的可能,不受任何行业、资源、地域、用户的约束。从这个层面看,各产业领域未来发展方向几乎都能和大数据挂钩。以“十二五”国家战略性新兴产业发展规划为例,很多技术前沿的描述和布局,均与大数据相一致或关联,或是可以通过大数据实现。如新一代信息技术产业布局了物联网、移动终端设备、云计算、海量数据处理软件;节能环保产业布局了高效储能、节能监测和能源计量;生物医药产业布局了生物资源样本库、基因测序,以及基于物联网的远程健康管理服务等。
由于大数据技术兴起于互联网时代,互联网的快速发展与其持有的开放、共享、合作等观念密切相关,因而大数据技术的创新也引入了互联网的这种价值观。例如有不少大数据技术是开源的,可无偿供给全世界的开发者使用和改进。开源项目、开源社区和开放性创新联盟组织的成熟更是推动了大数据核心技术的发展,催生了多种用于存储、处理和分析大数据的新产品。这一过程有效降低了产业技术的壁垒,推动更多的企业和创业者介入,进一步加快了技术应用转化的过程,有助于产业的迅速成长。
虽然大数据产业的“技术驱动”色彩十分明显,与“应用驱动”阶段尚有一段距离,但这一转变过程正在加速进行。
细化的产业竞争策略逐步成型
大数据产业是典型的知识密集型服务业,除了基础设施环节会带来一定能耗之外,其余环节均为零能耗、高附加值。其在初始资本、法规监管等方面的准入门槛极低,但对人才资源的要求较高。为此,产业竞争呈现出数量大、水平高的特点,企业竞争策略逐步分化。
尽管大数据从业者正在急剧增加--几乎所有的信息技术企业都在此领域布局,同时创业者持续不断地进入,竞争者甚多,然而由此带来的并非过度竞争,而是良性竞争,最终将推动技术的创新和价值的实现。
这主要归功于两个原因:一是高创新的属性。大数据技术是信息技术领域中的高附加值环节,以谷歌、亚马逊等为代表的大数据企业,无论是在技术先进性、创新活跃度还是在市场份额上,都在全球处于领先位置。二是高增长的预期。作为企业个体,在产业急速成长的预期之下,基本都选择了追求专业性的策略,依靠产品性能和服务取胜,而摈弃了追求低成本的策略。
在竞争过程中,不同类型的竞争者各具优势。按照技术的变革性与应用水平,主要分化为三类竞争者:一是“互联网颠覆者”,谷歌以及各类大数据开源项目发展了全新的基础技术与数据库构架,依靠免费、开源的所谓互联网模式,彻底改变了原有的技术标准与游戏规则,颠覆了以往各自为阵的信息技术产业。
二是“初生牛犊”,在新的规则面前,大公司与创业者处在同一条起跑线上,一些拥有核心人才与市场嗅觉的创业企业,在特定工具、专业平台方面迅速抢占先机,填补市场空白,获得快速发展,在产业链中拥有了一席之地。
三是“系统集成商”,像微软、IBM这样的传统IT巨头拥有强大的资金、研发能力和市场资源。他们能够敏锐意识到自我革命的紧迫性并马上采取应对举措,积极收购大数据相关企业,将收购获得的技术产品组装为面向行业的应用解决方案,并加强大数据商业营销。
另外,政府也是大数据产业的重要一环,主要体现在政府对公共数据的开放上这将使政府在促进产业发展上扮演更加重要的角色。
2009年,刚上任的美国总统奥巴马签署的首份总统备忘录即为《透明和开放的政府》,随后建立了统一的政府数据开放门户网站:Data.Gov,逐步开放政府拥有的公共数据,并提供多种应用程序接口,供开发者创建特色应用。截至2014年初,该网站开放的数据集已经超过了85000项,汇集了1200余个应用程序和软件工具、手机插件,其中超过300个是由个人或民间组织开发。新的商业模式和企业随之产生,如FlightCaster公司基于美国交通统计局、联邦航空局交通管制中心警报、美国气象局和航班运行状况信息网站FlightStats的数据,提供航班晚点预报,比航空公司的正式通知早6个小时,且准确率达到85%-90%.
数据驱动型的商业模式创新
数据驱动型的商业模式有如雨后春笋,在全球大量涌现。按照数据的获取、管理、分析、应用环节的区分方式,可以将大数据的商业模式分为数据托管和交易平台、关系挖掘和沉淀价值利用、数据社交和跨界连接三种类型。
数据托管和交易平台模式应用已有数十年之久,是发展最为成熟、最为普遍的大数据商业模式,本质是发挥规模效应,降低单个企业在数据信息存储和寻找上的投入成本。主要业务形态有空间出租托管、数据商店、数据市场等,典型的代表企业为亚马逊、EMC2、DropBox.
近年来引入“云”的概念,从简单的数据存储,逐步扩展到数据聚合平台,最终形成云服务;而以独特数据资源进行的整合朝着纵向产业链上下游整合和横向多种产业整合两个方向发展,促使了一站式数据商店和数据交易平台的出现。如亚马逊、微软等企业均建立了可以交易应用程序和高级数据集的数据商店,目前已有数万亿个数据点、数千个订阅、数百个应用程序。
关系挖掘是媒体热炒的主流大数据商业模式,也是数据科学的主要应用模式。核心是通过数据发现隐藏的相关性,最终用于指导商业、精准化服务与辅助决策。
实现这种模式需要一些先决条件,主要是面向数据的处理分析环节:一是目标领域的完全量化,如互联网广告领域,从广告点击到用户购买行为,均有完整详实的数据记录;二是数据处理能力的大幅提升,要能够处理非关系型数据,并在海量条件下保持实时快速的性能。该模式的难点在于需要颠覆常规的用户思维和需求逻辑,典型类型是沉淀价值的利用,将一些通常无意义的数据甚至是垃圾数据进行利用,最终得出有价值的结论。
例如,谷歌公司利用数十亿用户搜索时的错误拼写记录来提升其拼写检查器的智能性。就目前而言,基于关系挖掘的大数据模式尚未成熟,但承载了社会各界的较高期望:这种模式将有助于驱动产业转型和发展新兴产业,如推动生物医药等研发密集型产业、企业咨询等知识密集型产业向数据密集型产业转型,推动零售、交通等传统服务业向现代服务业转型,推动传统制造业向智能制造业转型等。
与前两种模式不同,数据社交和跨界连接模式直接面向每一个社会个体,本质上是充分挖掘物理世界的个体资源,将其变成虚拟世界的一个节点,与其他的节点进行连接、交互和交易,从而大大降低各类商业化业务的推广成本,并形成新兴业态。这种模式正在走向成熟,最典型的代表就是O2O.
例如微信成为了连接线上线下、开展移动支付的重要入口;打车软件有效降低了供需双方的信息不对称,提升了出租车市场的智能化程度;可穿戴设备将人体的讯息进一步量化,并提供决策建议;苹果Passbook软件为用户提供了一个智能的电子卡包。推行这种模式也有几个必要条件,主要是针对数据的采集传输环节:移动化,需要带有位置服务、能够发射无线信号的智能终端;稳定连接,需要高速、泛在的外部网络环境;在线支付,依靠用户最终的支付行为实现盈利;持续感知能力,需要先进的传感器技术、低功耗芯片技术以及电池技术作为保障。
『叁』 大数据好学么
对于学生来说没有基础是一门比较难的课程,但只有找到自己的学习方式,才能实现自己的大数据梦想。
大数据培训课程不难学好。主要是寻找一种独特的学习方式,减少学习困难,提高学习效率。
『肆』 《大数据》读后感字
《大数据》读后感2000字
如今,我们正处于一个大数据时代,有时候数据给了我们有力的证明。以下是、《大数据》读后感2000字,欢迎阅览!
这两年,大数据,云计算的思想就像小苹果的音乐一样,传的到处都是,每一个公司不管是互联网公司还是传统企业,都标榜自己的大数据。
1、实体物联网与虚拟物联网
曾几何时,物联网的概念闹得风生水起,庞大的物联网能够让世间大量的物体,都能够被检测 并联网,包括了人、车、房等一切能够被联网的物体,这些物体都能够以种方式被感知他的存在,并对其信息记录在案,以供使用。在若干年前,这还是一种看似遥不可及的事物,要对每个物体都贴上一个所谓的RFID的标签,显得不切实际。如今,随着手机的大量使用,人类本身也被加入了物联网中。为什么要物联网?是为了获取什么?要知道物联网获取了什么,只需要看看在一个物体在没有加入物联网与加入物联网之后,我们多出了哪些东西便能够知晓。那么,很明显,我们需要通过某种方式来获取该物体的信息,这种存储下来的信息,就叫做——数据。
物联网产生的数据是实体的物品之间的信息,而现在的互联网上,占最大数据量的,是虚拟物品,或者叫做网络虚拟物品。由于网络物体是直接寄生于网络,具有能够方便的接入网络的特征,因此,在获取实体物体信息还有一定难度的时期,占有很大优势。但今后实体的物联网产生的数据量一定会不断增加,或许,能够超越网络上的物物相连数据量。
网络的广泛使用,使得信息的产生于传遍变得容易,每个接入网络的人都以一定的角色存在,都是网络的信息的创造者。对于所产生的信息而言,每个接入网络的人又身兼多角,对于网络服务商,他是网络使用者的角色;对于门户网站而言,他是使用的用户;对于社交网站而言,我们则扮演一个虚拟或者真实的网络角色;对于浏览器而言,他是一系列的浏览网页、一些列鼠标动作的角色… 不同的角色取决于对方需要从我们的行为中获取哪些信息。将网络上各种角色看成是虚拟的物体,那么,这种虚拟物体构成的虚拟物联网便产生了巨大的数据量。经历过一直以来缺乏信息获取渠道的日子,现在,既然信息获取变得如此容易,那么,必然迎来信息量暴增的时代——大数据时代。
2、思维的转变
技术的改变,使得我们思维方式也要随之发生变化。在过去的小数据时代,由于获取信息、存储信息、整理信息都是费时费力的活,我们只能精打细算,捉摸着如何以最小的代价、最快的方式来收集尽可能准确的信息。之所以会有抽样统计的方式,是受技术所限,无法获得全体的样本,或者就算获取了也无法在合理的时间内进行处理。由于信息获取代价大,使得我们不得不在获取信息前,就把一切都想清楚,才能够着手处理。这就像在计算机出现的初期,使用纸袋来编码的时期,一次出错的代价太大,所以人们不得不在输入前将代码验证过无数遍之后才敢输入到机器中。而现代计算机让编码的效率大大提升,这才使得人们能够创造出更加强大的软件。人们不需要在着手编码前就对代码过分深思熟虑,因为机器会帮助你解决一些问题。因此,那些担心由于获取数据太方便,进行数据处理、分析代价太小而使人们变得懒惰或者做事欠考虑的家伙,真是杞人忧天。历史上,技术的进步都会提升人类的生产力,但却没有让人们变得懒惰,因为与此同时,欲望也随之增长。人类只会变得更伟大。
因此,大数据时代,这个数据更加全面的时代,我们可以涉足一些之前由于缺乏数据而无法涉及的领域,例如——预测。这是一个令人兴奋的领域,但其实这个领域早有苗头,而且大家都是受益者。我们平时使用的输入法中的智能联想功能,能够根据我们之前输入的文字,来预测我们接下来有可能输入的文字,以节省我们的输入时间。这种算法里,没有人工智能,而只有人们大量的输入习惯的统计,通过大量数据的统计来预测,是一个统计学的方式而非加入了特有的规则或者逻辑。这便引出了在大数据时代,对于信息处理的一种重要方式,基于统计,得出不同个体的相关关系,却无需了解其因果关系,而我们则受益于相关关系。这种方式,看似有些投机取巧,却能够在关键时刻令我们处于优势地位。我们已经习惯了先知道某些事物的因果逻辑,继而推断出相应的结果。但世间总会有一些令人无法用合理的逻辑进行解释的现象,若通过大数据分析,我们能够跳过逻辑阶段直接享用某些一些结果(沃尔玛的啤酒加尿布案例),岂不乐哉。当然,严密的逻辑永远是值得尊敬的。
3、互联网的黏性
在经历过了从广度上通过新花样来吸引用户的时代,由于技术的提高,一个创业者在一个新的领域开辟的东西很容易被其他人所复制。在这个时候,深度很重要。特别是购物网站、微薄、门户网站这类信息量大的网站,越是了解一个用户,优势就越大。所以,在技术已经不是最重要的因素的时代,如何增加用户的黏性、忠诚度便是首要的。通过用户之前的信息,来推测用户的喜好,给用户推荐相应的信息或物品。当你越了解一个用户,而别人却不了解时,这个用户就越离不开你。微薄中有他的`智能排序功能、新闻门户中有“今日头条”应用,各类购物网站有他的推荐算法(但这个纯粹为了增加消费而非增加用户黏性),都能够根据用户之前的浏览、偏好来给出相应的推荐。这些的基础,都是拥有用户的行为记录,否则,都无从谈起。
各行各业,都在疯狂的抓紧时机,获取数据,拥有足量的数据,那一切就变得皆有可能。
凡是过去,皆为序曲是大数据业者最喜欢引用的语句。大数据是现在的潮流,大数据时代被认为是了解大数据的初级读物。近期连续读了两遍,第二遍是为了写这篇读后感,总体而言,值得一看,但细节方面却需要讨论了。
维基网络对大数据的解释:Big data,或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
有人说现在是读图时代,除去小说、心灵鸡汤以外,现在的畅销书基本都有图片,这本书是一个特例
首先尝试解析一下作者的三大观点,这三大观点是大数据业者很喜欢引用的三句话:
1 不是随机样本,而是全体数据
我想所有人都能意识到对全体数据的分析优于对随机样本的分析,但在现实中我们经常拿不到全体数据:一是数据的收集方法,每一种方法都有适用的范围,不太可能包罗万象;二是数据分析的角度,战斗机只能统计到飞回来的飞机上的弹孔,而坠毁的则无法统计,沃德通过分析飞回来的战斗机得出来最易导致坠毁的薄弱点;三是处理能力跟不上,就像以前的天气预报太离谱是因为来不及算那些数据。“采样分析是信息缺乏时代和信息流通受限制的模拟数据时代的产物”,作者显然只关注了一部分原因。
从语言的理解上看,什么是全体数据,究竟是“我们需要的所有数据”,还是“我们能收集到的所有数据”,书中的很多商业案例中,处理的只是“我们能收集到的所有数据”,或者说是“我们认为的全体数据”。人对自然的认识总是有限的,存在主义认为世界没有终极的目标。书中举例“Farecast使用了每一条航线整整一年的价格数据来进行预测”,而“整整一年”就是一个采样,或者是“我们需要的所有数据”。
从历史的角度看,国外的托勒密建亚历山大图书馆唯一的目的是“收集全世界的书”,实现“世界知识总汇”的梦想,国内的乾隆汇编四库全书,每个收集的过程都有主观因素在里面,而他们当时都认为可以收集全部的书籍,到最后,我们也没有得到那个梦中的全体。
2 不是精确性,而是混杂性
既然我们过去总是在抽样,那本身就是在一个置信水平下,有明确的容错度或者是偏差值。人类永远知道我们是在精确性受限的条件下工作。同时,作者本身也承认 “错误并不是大数据固有的特性,而是一个亟需我们去处理的现实问题,并且有可能长期存在”。那大数据的特征究竟是精确性还是混杂性?
由此衍生出一个问题,大数据的品质如何控制:一、本身就不要求精确,但是不精确到何种程度是需要定义的,否则就乱套了,换个角度,如果定义了容错度,那符合条件的都是精确的(或者说我这句话还是停留在小数据时代?这里的逻辑我没有理顺)。就像品质管理大师克劳斯比提出过零缺陷理论,我一直觉得是一个伪命题,缺陷是一定存在的,就看如何界定了;二、大量非结构化数据的处理,譬如说对新闻的量化、情感的分析,目前对非SQL的应用还有巨大的进步空间。
“一个东西要出故障,不会是瞬间的,而是慢慢地出问题的”。“通过找出一个关联物并监控它,我们就能预测未来”。这句话当然是很认同,但不意味着我们可以放弃精确性,只是说我们需要重新定义精确度。之于项目管理行业,如果一个项目出了严重的问题,我们相信,肯定是很多因素和过程环节中出了问题,我们也失去了很多次挽救的机会。而我们一味的容忍混杂性的话,结果显然是不能接受的。
3 不是因果关系,而是相关关系
这是本书对大数据理论的最大的贡献,也是最受争议的地方。连译者都有点看不下去了。
相关关系我实在是太熟了,打小就学的算命就是典型的“不是因果关系,而是相关关系”。算命其实是对趋向性的总结,在给定条件下,告诉你需要远离什么,接近什么,但不会告诉你为什么那样做。
我们很多时候都在说科学,然而,什么是科学,没有人能讲清楚。我对科学的认识是:一、有一个明确的范围;二、在这个范围内树立一个强制正确的公理;三、有明确的推演过程;四 可以复制。科学的霸道体现在把一切不符合这四个条件的事物都斥为伪科学、封建迷信,而把自己的错误都用不符合前两条来否决。从这个定义来看,大数据不符合科学。
混沌学理论中的蝴蝶效应主要关注相关关系。它是指对初始条件敏感性的一种依赖现象,输入端微小的差别会迅速放大到输出端,但能输出什么,谁也不知道。
人类一旦放弃了对因果关系的追求,也就放弃了自身最优秀的品质:意志力。很多人不愿意相信算命是担心一旦知道了命运,就无法再去奋斗。即使我相信算命,也在探求相关关系中的因果要素。我放弃第一份工作的原因之一是厌倦了如此确定的明天:一个任务发出去,大概能预测到哪些环节会出问题,只要不去 follow,这些环节十有八九会出问题。
解析完这三大观点,下面是我对大数据理论的一些疑惑。大数据是目前风行的反馈经济中的重要一环,在金融、互联网行业的应用最为广泛,而这些行业都是大家所认为的高薪领域。很多时候我就在想,所谓无形的手所产生的趋势究竟是不是无形的。比如几家公司强推一个概念,说这是趋势,不久就真的变成趋势了。我们身边活生生的例子就是天猫的双十一和京东的618,一个巨头开路,无数人跟风,自然就生造出购物节,至于合理不合理,追究的意义也不大,因为很多事情是没有可比性的。这和没有强制控制中心的蜂群思维又不一样。
看完这本书,总是觉得作者说的过于绝对,也许是我的认识太浅了吧,所以最后用法演四戒做总结:
势不可以使尽,使尽则祸必至
福不可以受尽,受尽则缘必孤
话不可以说尽,说尽则人必易
规矩不可行尽,行尽则事必繁
『伍』 关于大数据的短句
生活中的大数生活中的大数:构成一个人体需要500万亿个细胞, 一天有24小时即1440分钟86400秒,一年有365天有8760小时525600分钟31536000 秒,中国的土地面积960万平方公里(9600000),中国是世界上人口最多的国家,人口有1,300,000,000(十三亿)多,中国最长的河流是长江,长度是6,397(六千三百九十七)公里,中国最大的湖是青海湖,周长360(三百六十)公里,面积4,500(四千五百)平方公里,中国最快的列车是上海磁悬浮列车,速度是每小时430(四百三十)公里,世界上最大的海洋是太平洋,面积是179,968,000(一亿七千九百九十六万八千)平方公里,世界上最大的洲是亚洲,面积是4,400(四千四百)万平方公里,世界上国土面积最大的国家是俄罗斯,面积是17,075,870(一千七百零七万五千八百七十)平方公里,世界上最高的山峰是珠穆朗玛峰,它的高度是8,848.8(八千八百四十八点八)米。
数据(big data)指承受间范围内用规软件工具进行捕捉、管理处理数据集合
数据比喻蕴 藏能量煤矿煤炭按照性质焦煤、烟煤、肥煤、贫煤等类露煤矿、深山煤矿挖掘本与类似数据并于用价值含量、挖掘本比数量更重要于行业言何利用些规模数据赢竞争关键
数据价值体现几面:
1)量消费者提供产品或服务企业利用数据进行精准营销;
2) 做美模式尾企业利用数据做服务转型;
3) 面临互联网压力必须转型传统企业需要与俱进充利用数据价值
1、你若赐我一段浮华,我便许你满世繁花。
2、他在远方看我,眼神犹如雨天般辽远而悲伤。
3、我们的火,要誉逗把世界点燃。
4、十年生死两茫茫,不思量,自难忘。千里孤坟,无处话凄凉。
5、小时候我们哭着哭着就笑了,长大后,我们笑着笑着就哭了。
6、向来缘浅,奈何情深。
7、静静倚在窗两边的鸳鸯蝴蝶,它们远走高飞——faye《红线》
8、哀草连横向晚晴,半城柳色半声笛。
枉将绿蜡作红玉,满座衣冠无相忆
9、哥哥我祝你此生生不如死,颠沛流离。
10、回忆落空了残年。
11、活在这珍贵的人世间,水波温柔,阳光强烈——海子
12、看清这个世界,然后爱它——罗曼·罗兰
13、很长的岁月里,我们放肆而乖张
13、过了就过了,一切不过是一个花开的历程。
14、爱情啊,是一种诅咒,我们都会变成魔鬼的。——《杪冬》
15、生命在这样的救赎下,以尊严的姿态延伸。
16、岁月断送了年复一年的青春。
17、我怀念我停在单车上的十七岁。
18、想念是一种仪式,真正的记忆与生俱来。
19、要有最朴实的生活和最遥远的梦想,即便天寒地冻,路遥马亡。
20、太阳尚远,但必有太阳
1. 鳕胡虚举鱼一次产卵达千万粒,真正变成幼鱼的卵可能还不到1%。
列数字:准确又科学根据的。2. 雄伟壮观的钱江潮成因除月、日引力影响外,还跟钱塘江口状似喇叭形有关。
钱塘江南岸赭山以东近50万亩围垦大地象半岛似地挡住江口,使钱塘江赭山至外十二工段酷似肚大口小的瓶子,潮水易进难退,杭州湾外口宽达100公里,到外十二工段仅宽几公里,江口东段河床又突然上升,滩高水浅,当大量潮水从钱塘江口涌进来时,由于江面迅速缩小,使潮水来不及均匀上升,就只好后浪推前浪,前浪跑不快,后浪追上,层层相叠。3. 我国曾经发现过一头近四万公斤重的鲸,约十七米长,一条舌头就有十几头大肥猪那么重。
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得裤碧竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
『陆』 如何评价大数据的未来
大数据前景主要的三大就业方向:
大数据系统研发类人才、大数据应版用开发类人才和大数据分权析类人才。
在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。未来十年大数据行业都是热门的,也还会有更多的行业和岗位顺应大数据的发展而产生。
各行业的生态产业链都将联系在一起,大数据的发展前景是非常大的,所以大数据培训就业在目前看来是非常靠谱的,海牛大数据致力打造高端大数据人才,想学大数据的朋友要抓住这个机会,给自己的梦想一个起飞的平台。
『柒』 大数据是什么好学吗
你好,大数据的待遇让人羡慕,大数据工程师成为很多人的梦想。想要成为大数专据工程师,肯定需要工作技巧、行属业背景知识等多方面的输入。只要掌握了真正的的技术,以后各方面的发展都会非常不错。
如果想入大数据行业,却苦于自己没有基础,担心自己学不会,可以选择专业的学习,千锋的很不错,一般学习费用在2W左右,也有线上的相关学习。零基础学习并不可怕,一般4-6个左右的时间,只要你肯努力,一切都不是事。
『捌』 改变世界的第四种力量—大数据
改变世界的第四种力量—大数据
世界著名未来学家托夫勒曾说改变这个世界的力量有三种暴力、知识、金钱,而如今我们的世界正在被第四种力量改变,那就是大数据!
—— 题记
也许你不知道什么是大数据,但是你一定发现了当你打开常用的浏览器之后网页上的推荐内容很多都是你曾经浏览过的,或者是你比较感兴趣的,这就是大数据。前几天某报纸有一篇文章说我们网购的假货跟大数据有关,所有的茅头都指向了大数据,觉得是大数据“出卖”了自己,据说我们的消费记录,购买记录,单价记录,将作为发货参考数据被系统识别,如果你一直都买低价位或者高仿的东西,发货系统就会给你发假货或者高仿。然而,真的是大数据的错么?大数据莫名其妙就成了“背锅侠”,或许你还没有弄懂大数据的核心是什么。
大数据不管应用在哪个行业它的核心都是通过技术来获知事情发展的真相,最终利用这个“真相”来更加合理的配置资源。具体来说,要实现大数据的核心价值,还需要前两个重要的步骤,第一步是通过“众包”的形式收集海量数据,第二步是通过大数据的技术途径进行“全量数据挖掘”,最后利用分析结果进行“资源优化配置”。说白了,大数据最终的落地就是资源优化配置。所以诸位剁手党们此刻还飞奔在路上的假货和大数据无关!大数据只是客观的还原“真相”,帮用户准确进行数据分析和消费定位而已,你买的假货还真赖不到大数据头上。
俗话说无风不起浪,大家之所以觉得是被大数据“坑”了,很大程度上是不了解大数据造成的“误解”。接下来我们从实际案例出发给大家介绍一下大数据的应用。比如天机APP,它就是一款纯粹的大数据理念下的追踪软件。我们来看看天机是怎么利用大数据进行资源的优化配置的,它跟传统资讯软件又有哪些不同之处呢?
首先,在海量的资讯中通过众多的渠道进行数据收集,在收集数据完成之后通过语义分析、数据整合、碎片加工等自主研发的核心技术对所有抓取的数据进行分门别类。接着,利用大数据特有的途径对已经筛选过的资讯进行更深层次的数据挖掘,探索数据传播轨迹的发展方向,以及各类媒体对事件的态度。最后,根据不同的用户需求,对资讯进行合理的配置,准确的把资讯及时推送到不同的客户端。在完成初次资源配置以后,时刻关注这些信息的发展状况,不间断的进行更新,直到用户自己选择终止对这类信息的需求。那么应用了大数据的天机和别的资讯软件比较有什么不同点呢?
对于用户来说,普通的资讯软件就是新闻的搬运工,它的主要作用就是把新闻从网页上搬运到一个APP客户端集中起来,方便用户的阅读。在天机的客户端,用户不需要搬运过来的新闻,只要输入关键词,瞬间就能获取全网所有的相关资讯,因为有大数据为依托,完全摆脱了“搬运工”的称号,它的唯一理念就是追踪,最大的功能按钮也是追踪,未来的资讯趋势是让所有的用户参与到资讯的传播过程中来,而天机做到了,它也慢慢的改变了人们的生活方式。
天机做为一款大数据产品从哪些方面改变了人们的生活方式呢?①高效的一站式阅读体验毫无疑问在互联网大数据时代,周围无时无刻不在充斥着各种各样的信息。比如,微信上分享的干货软文、某电商的年度大促信息、某旅行社的国外团购报名打折事宜.......
时间太紧,杂事太多,都会让你无法专注去阅读一条完整的信息,导致效率低下。
▲半分钟原则
以每天早上要阅读的新闻为例:
作为一个上班族你每天早上起来的第一件事就是用尽量少的时间浏览睡着的八小时发生了什么事情,如果你不想上班迟到的话,你的阅读时间只有几分钟而已。
所以你在打开手机上的资讯软件的时候,需要考虑“是否能在五分钟之内读完新闻?”
?若能,打开你手机上的资讯APP,快速阅读
在打开了手中的资讯软件的情况下,你可以很自信的对碎片化的资讯进行有目的的阅读和吸收,然后决定在接下来的这一天你需要持续关注的新闻有哪些,在头脑中做个简单的过滤就好!在天机的客户端,甚至不需要五分钟就能完成对信息的筛选和接收,从清单到资讯圈只需要半分钟就能够了解所有资讯!
?若不能,你只能错过你在睡着的八个小时这个世界发生的一切
但是,对天机的用户来说,不会发生早上起来错过新闻这样的事!
②丰富多样的基础功能▲追踪清单
当你在打开天机的一瞬间,相当于开启了一个大型数据库级别的资讯源,追踪清单会温和的提醒你上一次你关注的话题有哪些新的动态,你可以选择打开也可以选择忽略。
▲追踪按钮
低调的主题追踪功能,在瞬间为你准备好了大家都在看的新闻,源源不断的新鲜新闻通过大数据输送到了不同的用户客户端,绝对不会让用户错过什么。
▲资讯圈
想要最快的浏览新闻,打开天机的资讯圈,里面已经追踪好了所有前一秒发生的新闻,让用户体验最好的是当打开资讯圈的时候,并没有被各大门户网站的新闻刷屏,而是各种渠道的高质量有效资讯(因为天机获取新闻的原则是以资讯本身的价值为标准的,而不是按门户网站的排名来抓取)。对百分之九十的用户来说,打开资讯圈一分钟之内阅读到的新闻就能满足他们对信息的需求。
③大数据衍生的深层次解读功能▲天眼以报道统计为基础精确的计算出所有媒体最近七天对该话题的报道量,报道比例按照按照媒体性质划分出报道的比例,以报道数量排行为结果导向展示了排名前五的媒体,从不同的角度体现了一篇新闻的阅读价值、重视程度、以及报道热度。
▲传播轨迹以时间为顺序,以媒体为核心,用轨迹的形式在现了一条新闻的全部生命过程。突破了新闻的局限性和告别的笼统概念的传播。
这就是天机,在把大数据追踪运用到极致以后,又很自然的回归到了资讯软件的本质使命。毫不夸张的说在北上广深这些经济和互联网技术最发达的地区,百分之八十的人都在使用天机APP。与此同时,天机的4.2版本一上线就被赋予了很多的赞誉和期望,它的具体使用方法也因为人群的不同而千人千样。在业界人士看来,这款APP最大的价值在于:让大数据的梦想不止于空想,让大数据在资讯界的应用有了落地点,澄清了人们对大数据的“误会”让更多人在了解什么是大数据的同时也享受到了追踪带来的愉快阅读体验!
现在大家应该明白了网购买到的假货真的跟大数据无关,那些觉得是大数据出卖自己的,大概是本末倒置了!大数据只是一个忠实的记录着,它会客观的分析所有的真相。你之所以会在网购时买到假货,是因为那些货本身就是假的,毕竟给你发货的是人而不是大数据!而被我们“误会”的大数据正在被应用到越来越多的行业,它的力量正在改变我们的世界!
以上是小编为大家分享的关于改变世界的第四种力量—大数据的相关内容,更多信息可以关注环球青藤分享更多干货