A. 智能电网的大数据体系是什么
智能电网就是“大数据”这个概念在电力行业中的应用,就是通过网络将用户的用电习惯等回信息答传回给电网企业的信息中心,进行分析处理,并对电网规划、建设、服务等提供更可靠的依据。
日前,美国加州大学洛杉矶分校的研究者就根据“大数据”理论设计了一款“电力地图”,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部集合在一起,制作了一款加州地图。该图以街区为单位,展示每个街区在当下时刻的用电量,甚至还可以将这个街区的用电量与该街区人的平均收入和建筑物类型等相比照,从而得出更为准确的社会各群体的用电习惯信息。
这个“大数据”地图也为城市和电网规划提供了直观有效的负荷数预测依据,也可以按照图中显示的停电频率较高、过载较为严重的街区进行电网设施的优先改造。
同时,对于风能、太阳能等具有间歇性的新能源,通过“大数据”分析进行有效地调节,也可以使新能源更好地与传统的水火电进行互补,更为灵活地出力。
B. 为什么电网企业要做大数据分析
为什么电网企业要做大数据分析呢?这个必须得要分析,不分析的话,整个全市用电企业怎么去分配这些数据,必须做依据,而通过依据再进行分析。
C. 大数据在电力行业的应用前景有哪些
前景还是很广的,参考《中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,对于电力行业而言,电力生产涉及的运行工况参数、设备运行状态等实时生产数据,现场总线系统所采集的设备监测数据以及发电量电压稳定性等方面的数据,电力企业运营和管理数据如交易电价、售电量用电、客户信息、综合数据等共同构成了电力大数据 。
近年来,在电力领域大数据已经得到了广泛关注,国内的一些专业机构和高校开展了电力大数据理论和技术研究,我国电力行业也在积极开展大数据研究的应用开发,电网企业、发电企业在电力系统各专业领域开展大数据应用实践,国家电网公司启动了多项智能电网大数据应用研究项目。
借助大数据技术,对电网运行的实时数据和历史数据进行深层挖掘分析,可掌握电网的发展和运行规律,优化电网规划,实现对电网运行状态的全局掌控和对系统资源的优化控制,提高电网的经济性、安全性和可靠性。基于天气数据、环境数据、输变电设备监控数据,可实现动态定容、提高输电线路利用率,也可提高输变电设备运检效率与运维管理水平;基于WAMS数据、调度数据和仿真计算历史数据,分析电网安全稳定性的时空关联特性,建立电网知识库,在电网出现扰动后,快速预测电网的运行稳定性,并及时采取措施,可有效提高电网的安全稳定性。
D. 国网福建电力推进能源大数据中心建设
8月24日获悉,国网福建电力部署推进能源大数据中心建设工作,高标准做好能源大数据中心工作整体规划,稳步推进能源大数据中心实体化运作,强化数据产品质量,更好支撑国家电网公司战略落地,支撑 社会 和公司的治理能力现代化。
国网福建电力 探索 建立科学、合理的协作机制,与政府部门、院校、专家等建立密切的合作关系,加强策划研究,提升数据产品的质量;加快外部数据的汇聚接入,深化数据接入的技术方案和管理机制研究,促进能源行业数据统一归集、统筹管理和资源共享,建立科学、准确的大数据分析模型,让数据更加完整、更有价值;统筹规划推进数据基础设施建设,制定数据应用管理细则,提出数据应用需求库、储备库、研发库和产品库“四库”规范化管理要求,加强数据基础管理,确保数据质量和安全;加强队伍建设,注重信息、管理专业人才培养,更好服务能源大数据中心发展。
该公司以市场需求为导向,强化精准投资,加强产品运营和应用管理,推进数据产品应用迭代,确保数据产品增值,提升研发效益。目前,该公司构建“电易+”数据产品体系,研发乡村振兴电力指数、茶产业用能可视化看板等20多项数据产品;推进企业排污治理、住宅空置分析、群租房识别等数据产品的对外增值。(林梅妹)
E. 电力企业从大数据中得到了什么
1、线路优化,在没有大数据之前,某小区可能你们的设计容量非常庞大,但回事实上只是浪答费,这个小区没有预计的那么耗电,而在铺设地下电缆这些,如果有大数据,也可以做到更精准。
2、如果你有用户的用电数据,其实可以大概知道该用户的消费水平,未来或许能够提供一些精准服务,例如:某个用户常年电表不走,可能是房子空置,某一天开始,用电大增,可能是房子已经在装修了,后续是不是该买各种家电了?
3、电力的调配,把电力输送到真正需要的地方。
4、产能优化,是风电、核电、煤电、还是水电带来的效益更好?大数据或许可以帮你解答这个问题。
5、设备的维护,录入所有设备的数据信息,哪些设备该保养该更换一目了然。
说那么多,要达到那一天感觉还是很遥远,现在大数据大多还是停留在表面,与产业结合还不是很多。点我名字,扫我大头贴,发现更多大数据之美。
F. 浅析电力行业如何拥抱大数据
浅析电力行业如何拥抱大数据
未来社会发展将会是大数据的时代,数据的意义已经不仅仅是记录,而是一种能源,一种潜力巨大、影响深远的能源。2015年8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,特别强调通过大数据的发展,提升创业创新活力和社会治理水平。大数据正在改变着各行各业,同样,大数据在电力行业也得到广泛的应用。
电力行业如何拥抱大数据 打破数据壁垒
近年来,在电力领域大数据已经得到了广泛关注,国内的一些专业机构和高校开展了电力大数据理论和技术研究,我国电力行业也在积极开展大数据研究的应用开发,电网企业、发电企业在电力系统各专业领域开展大数据应用实践,国家电网公司启动了多项智能电网大数据应用研究项目。
智能电网是解决能源安全和环境污染问题的根本途径,是电力系统的必然发展方向;全球能源互联网则是智能电网的高级阶段,“互联网+智慧能源”进一步丰富了智能电网的内涵;这些新概念均与大数据密切相关,大数据为智能电网的发展和运营提供了全景性视角和综合性分析方法。就物理性质而言,智能电网是能源电力系统与信息通信系统的高度融合;就其规划发展和运营而言,智能电网离不开人的参与,且受到社会环境的影响,所以智能电网也可被看作是一个由内、外部数据构成的大数据系统。内部数据由智能电网本身的系统产生,外部数据包括可反映经济、社会、政策、气候、用户特征、地理环境等影响电网规划和运行的数据。在智能电网的发展过程中,大数据必将发挥越来越重要的作用。
但是从目前来看,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。
业内称电力行业拥抱大数据,急需推动电力企业间的数据开放共享,建设电力行业统一的元数据和主数据管理平台,建立统一的电力数据模型和行业级电力数据中心,开发电力数据分析挖掘的模型库和规则库,挖掘电力大数据价值,面向行业内外提供内容增值服务。
协调发展智慧电力、智能电网和智慧城市。电力大数据是智慧城市的基石,紧密围绕智能电力系统的发展开展电力大数据的应用实践。以重塑电力核心价值、转变电力发展方式为主线,未来必将实现智能电网与互联网的深度融合:将与城市的电、热、气、水和交通系统实现交互,把电能与供热、供水、供气以及交通系统进行互联互通,形成城市互联网,通过城市互联网技术来进行整合,比如给家庭、社区、工业园区、企事业单位、医院、学校提供一揽子能源解决方案,解决它的水、电、气、油甚至包括污水处理、垃圾处理、暖气供应、冷气供应,整个能源资源的成套解决方案,是人性化、智能化甚至量身定制的解决方案。
案例分析:电力行业如何拥抱大数据
以电力大数据的先行者——AutoGrid为例
1、正确姿势
AutoGrid的核心为其能源数据云平台——EnergyDataPlatform(EDP),创造了电力系统全面的、动态的图景。
类似于高级搜索引擎或天气预报算法,AutoGrid的能源数据平台挖掘电网产生的结构化和非结构化数据的财富,进行数据集成,并建立其使用模式,建立定价和消费之间的相关性,并分析数以万计的变量之间的相互关系。通过该能源数据平台EDP,公共事业单位可以提前预测数周,或只是分,秒的电量消耗。大型工业电力用户可以优化他们的生产计划和作业,以避开用电高峰。同时,电力供应商可使用该能源数据平台EDP来决定可再生资源,如太阳能,风能的并网,最大限度地减少这些能源间歇性对电网的影响。
DROMS(,需求响应优化及管理系统)为AutoGrid的需求响应管理工具。DROMS从已存在的AMI系统、有线网关、建筑管理系统以及数据采集与监控(SCADA)系统获得实时数据,结合配电系统的物理特性,基于机器智能,分析产生对单一负载的精确预测,在需求响应要求产生之前介入,迅速生成针对某一需求响应的应对策略。除此之外,对甩负荷要求及价格信号亦能有及时准确的反应。
2、优化需求管理
当需求侧管理日益成为电力运营的一个重要部分时,电力大数据的应用也变得日益重要。通过电力大数据的采集、分析及应用,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。
AutoGrid的客户覆盖发电端、输电端、配电端、用户,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。AutoGrid的能源数据云平台EDP,收集并处理其客户接入智能电网的智能电表、建筑管理系统、电压调节器和温控器等设备的数据,面向其用电客户提供DROMS,获取能量消耗情况,预测用电量,结合电价信息实现需求侧响应,生成需求侧管理项目的分析报告,提升客户全生命周期的价值收益;面向电网运营者提供DROMS,可提供需求响应应对策略,预测发电情况和电网动态负荷,预测电网运行故障,改善客户平均停电时间和系统运营时间,从而实现电网优化调度,减少非技术性损失,降低运营成本。
来自于ARPA-E项目的支持,AutoGrid还开发了一套软件来监测电力在电网中的流动,帮助公用事业公司更好地满足实时电力需求。在需求高峰期,公共事业公司可以让精打细算的消费者知道他们在能源领域是如何花费的或要求具有环保意识的消费者主动减少自己的能源消耗。从而公共事业公司可以更好地快速有效地管理对电网的需求和供给的波动。
由于在需求响应的突出表现,AutoGrid被美国NavigantResearch列为2014年度需求响应领军企业。
3、建立能耗图景
基于EDP和DROMS,AutoGrid可以为客户提供一个大规模的、动态的、不间断的、供能范围内的整体能耗图景。利用该能耗图景,公共事业公司可以可以实时“看”到本地区的能耗,以更好的进行电力控制。当数据不断被累积,AutoGrid就能提供秒前、分钟前甚至周前的用电预测,可以帮助电力企业客户实现不影响舒适度和生产率情况下的优化排产计划。因此,AutoGrid提供的不仅是能量消耗动态图,它提供的还是需求侧响应的应对方案。
以上是小编为大家分享的关于浅析电力行业如何拥抱大数据的相关内容,更多信息可以关注环球青藤分享更多干货
G. 大数据在电力行业的应用前景有哪些
关键技术:
电力大数据的发展也需要一些关键技术的支撑,(1)大数据传输及存储技术:电力系统各个环节的运行数据及设备状态在线监测数据将会带来海量数据传输和存储问题(2)实时数据分析及处理技术:在未来的电力系统环境中,从发电、输变电环节,到用电环节,都需要实时数据处理,借助电力大数据的分析技术可以从电力系统的海量数据中找出潜在的模态与规律,为决策人员提供决策支持。(3)大数据展示技术:包括可视化技术、空间信息流展示技术、历史流展示技术等.
目前,电力大数据应用场景主要在以下方面:
(1)规划—提升负荷 预测能力。通过对大数据的分析,利用数据挖掘技术,更准确地掌握用电负荷的分布和变化规律,提高中长期负荷的预测准确度。
(2)建设—提升现场安全管理能力。对现场照片进行批量比对分析,利用分布式存储、并行计算、模式识别等技术,掌握施工现场的安全隐患,或者核查安全整改措施的落实情况。
(3)运行—提升新能源调度管理能力。利用机器学习、模式识别等多维分析预测技术,分析新能源的出力与风速、光照、温度等气象因素的关联关系,更准确地对新能源的发电能力进行预测和管理。
(4)检修—提升状态检修管理能力。研究消缺、检修、运行工况、气象条件等因素对设备状态的影响,以及设备运行的风险水平,利用并行计算等技术实现检修策略优化,指导状态检修的深入开展。
(5)营销—提升对用电行为的分析能力。扩展用电采集的范围和频次,利用聚类模型等挖掘手段,开展对用电行为特征的深入分析,并实施区别化的用户管理策略。
(6)运监—提升业务关联分析能力。利用流式计算、可视化和并行处理等技术,实现全方位在线监测、分析、计算。
前景:
一、宏观经济形势评价与预测
二、服务电力企业、电力用户;1.用户能耗分析及用电优化;2.用电信息征信体系服务;
H. 大数据在电力行业的应用前景有哪些
应用前景如下:参考《中国行业大数据市场发展前景预测与投资战略规划分析报告》显专示,以物联网和属云计算为代表的新一代IT技术在电力行业中的广泛应用为基础,电力数据资源开始急剧增长并形成了一定的规模。作为经济社会发展的“晴雨表”,电力大数据将会在服务政府与社会、服务电力企业、服务电力用户等方面发挥积极作用。
产业关联分析
依据产业之间的关联关系、产业用电量、分析产业发展潜能。例如:根据电力大数据分析房地产泡沫(利用智能电表采集用户用电信息,统计分析房产空置率;利用房地产联网统一登记信息,统计多套房信息);依据钢铁、水泥、装饰等行业的用电量走势、分析房地产的发展走势。挖掘其他行业之间关联度。
产业结构分析
分析用电与行业分布、地区产业结构的关系。根据各地区各行业用电信息,利用大数据分析技术,分析和研究行业用电量地区结构变化、地区用电量行业结构变化。通过分析各行业、各地区的产业结构变化,为了解地区各行业发展趋势和行业发展前景提供数据支撑,等
I. 如何 大数据 电网
电网拥有大来量的数据,而且电网的源数据比较复杂,老系统很多。
电网要想用好大数据,首先建立好业务模型和数据结构,根据自身的需求和目标,作为分析目的。
选择一款合适的商业智能平台,国外的例如IBM,Oracle和SAP等大数据产品,国内也可以选择例如永洪科技的大数据BI产品。不太推荐开源的例如Hadoop大数据产品,成功率较低。
最好有足够支持的团队来做大数据项目,比选择大数据工具更重要,更能保证项目成功。