① 大数据技术有哪“5V”
容量(Volume):容量是指大规模的数据量,并且数据量呈持续增长趋势。
速率(Velocity):速率即数据生成、流动速率快。数据流动速率指对数据采集、存储以及分析具有价值信息的速度。
多样性(Variety):多样性是指大数据包括多种不同格式和不同类型的数据。
真实性(Veracity):真实性是指数据的质量和保真性。
价值(Value):价值即低价值密度。
② 煤矿企业大数据中心里的人都在干什么工作
ETL研发,Hadoop开发,可视化工具开发,信息架构开发,数据仓库研究,OLAP开发,数据科学研究,数据预测分析,企业数据管理,数据安全研究
③ 煤炭大数据应用有哪些
主要由以下三点作用: 第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。
④ 大数据时代 如何成为“煤老板”
大数据时代 如何成为“煤老板”_数据分析师考试
在大数据时代下,数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。数据挖掘的定义是从海量数据中找到有意义的模式或知识。
数据挖掘
大数据是最近两年提出来,也是媒体忽悠的一个概念。有三个重要的特征:数据量大,结构复杂,数据更新速度很快。由于Web技术的发展,web用户产生的数据自动保存、传感器也在不断收集数据,以及移动互联网的发展,数据自动收集、存储的速度在加快,全世界的数据量在不断膨胀,数据的存储和计算超出了单个计算机(小型机和大型机)的能力,这给数据挖掘技术的实施提出了挑战(一般而言,数据挖掘的实施基于一台小型机或大型机,也可以进行并行计算)。Google提出了分布式存储文件系统,发展出后来的云存储和云计算的概念。
大数据需要映射为小的单元进行计算,再对所有的结果进行整合,就是所谓的map-rece算法框架。在单个计算机上进行的计算仍然需要采用一些数据挖掘技术,区别是原先的一些数据挖掘技术不一定能方便地嵌入到 map-rece 框架中,有些算法需要调整。
此外,大数据处理能力的提升也对统计学提出了新的挑战。统计学理论往往建立在样本上,而在大数据时代,可能得到的是总体,而不再是总体的不放回抽样。
以山西开矿的煤老板为例:
开矿的前提是有矿,包括煤矿的储藏量,储藏深度,煤的成色。
之后是挖矿,要把这些埋在地下的矿挖出来,需要挖矿工,挖矿机,运输机。
之后是加工,洗煤,炼丹,等等。
最后才是转化为银子。
数据行业十分类似:
挖掘数据的前提是有数据,包括数据的储藏量,储藏深度,数据的成色。
之后是数据挖掘,要把这些埋藏的数据挖掘出来。
之后是数据分析输出,要把这些数据可视化输出,指导分析、商业实践。
直到这一步,才创造了价值。
所谓的大数据,大约就是说现在有座正在形成的巨型矿山,快去抢占成为煤老板吧,下一个盖茨兴许将在这里诞生。
接下来好好说。如果说硬要说相似度的话,那么重合度的确是有很高。因为大数据干的事情其实就是数据挖掘做的事情。
数据挖掘之前叫 KDD(Knowledge Discovery and Data Mining, 或者也可以是 Knowledge Discovery in Database),这样说就很好解释了。数据挖掘就是从海量的数据中发现隐含的知识和规律。那么说,这个东西是啥时候提出来的?上个世纪。大数据啥时候提出来的?也就这几年的事情吧。所以说,大数据很大程度上是数据挖掘的一个好听的名字。
以上是小编为大家分享的关于大数据时代 如何成为“煤老板”的相关内容,更多信息可以关注环球青藤分享更多干货
⑤ 信息技术和大数据在煤矿哪个好
大数据好。
1、安全得到保障。大数据技术已被广泛地应用在煤矿安全管理中,煤矿的安全已经得到了行之有效的保障,大数据好。
2、大数据好,为煤矿工人健康保驾护航。在井下复杂作业环境下,动态监测职工生命体征,准确了解职工健康状况,实现精准定位、无线语音通话,对于提升安全生产效率,减少灾害发生具有重要意义。
⑥ "煤炭大数据"网站提供什么信息
以下由“煤炭信息资源网”为您提供
价格分析、KPI监测、煤炭库存、煤炭进出口、国际煤炭流向、数据资源
、企业信用信息、企业运营状态、煤企分布、铁路货运、水运物流、全国铁路示意图、配煤计算器、全国铁路装车、煤炭调入调出、预测模型、能源经济、煤炭需求企业、煤炭消费、港口动态、市场资讯、在线客服等
⑦ 什么是大数据有什么特征与性质
大数据必然无法用单台的计算机进行处理,必须采用分布式架构。大数据也是具备有一定的特征与性质的。以下是由我整理的大数据的内容,希望大家喜欢!
大数据的主要介绍
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产,
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。
大数据的特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量
复杂性(Complexity):数据量巨大,来源多 渠道
价值(value):合理运用大数据,以低成本创造高价值
大数据的意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[7] 阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:
1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
3)分析所有SKU,以利润最大化为目标来定价和清理库存。
4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
5)从大量客户中快速识别出金牌客户。
6)使用点击流分析和数据挖掘来规避欺诈行为。
大数据的结构
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
大数据的应用
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
大数据的主要特点
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。