导航:首页 > 网络数据 > 大数据的英文书

大数据的英文书

发布时间:2023-06-14 00:18:40

㈠ 《Python金融大数据分析》pdf下载在线阅读,求百度网盘云资源

《Python金融大数据分析》([德] 伊夫·希尔皮斯科)电子书网盘下载免费在线阅读

资源链接:

链接:

提取码:4io4

书名:Python金融大数据分析

作者:[德] 伊夫·希尔皮斯科

译者:姚军

豆瓣评分:7.7

出版社:人民邮电出版社

出版年份:2015-12

页数:511

内容简介:唯一一本详细讲解使用Python分析处理金融大数据的专业图书;金融应用开发领域从业人员必读。

Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的首选编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具

《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中最重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。

《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。

作者简介:Yves Hilpsch是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件(参见http://pythonquants.com,http://quant-platfrom.com和http://dx-analytics.com),以及和Python及金融相关的咨询、开发和培训服务。

Yves还是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作为获得数理金融学博士学位的商业管理专业研究生,他在萨尔州大学讲授计算金融学中的数值化方法课程。

㈡ "大数据"怎样用英文表述呢

大数据的英文翻译是big data。

词汇分析

释义:大数据;巨量资料;海量资料;海量数据

短语

big block data称为大区块资料 ; 大区块资料

Big Bang Data数据大爆炸

Big Earth Data地球大数据

Big Brain Data大脑巨量资料

Big Complex Data大型复杂数据

拓展资料

1、?

大数据将如何改变您的做事方式?

2、.

但是庞大数据还会产生远比这更为严重的后果。

3、 themselves.

在庞大数据的世界中,相关数据几乎是自行浮出水面。

4、Ifyourservicedeals withbigdata,that's howthey'rerelated.

如果你的服务要处理大数据,那正是它们相关的东西。

5、Whatis therelationshiptoSOA?Related tothisisBigData, how isitrelatedtoSOA?

它与SOA之间有什么关系吗?与之关联的是大数据,那么它又是怎样和SOA关联起来的呢?

㈢ 大数据入门书籍有哪些

当年互联网疯狂发展的时候,很多人在观望和犹豫中错过了这班顺风车(没有尽早开个淘宝店,肠子都悔青了好几遍呢)。如今,同样的桥段上演,大数据时代,坚决不能再无动于衷!
于是,你着急,你迷茫,你很方……除了平时要加班加点的搬砖,牙缝里挤出来的的闲碎时间都贡献给度娘了,“小白如何学习大数据”,“大数据入门书籍有哪些”……
1:<大数据时代>
这是学习大数据必读的一本书,也是最系统的关于大数据概念的一本书,由维克托·迈尔-舍恩伯格和肯尼斯·库克耶编写,主要介绍了大数据理念和生活工作及思维变革的关系。
它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。
2:<爆发>
由巴拉巴西编写,主要讲了在一个历史故事的连续讲述中,了解大数据的概念实质。从大数据的历史开始,能更深入的了解大数据的发展历程。
巴拉巴西整本书讲述的大数据根本目的,是预测。他甚至有零有整地判断,人类行为93%是可以预测的。打个比方,千百年前人类无法如今天般准确预测天气,以致某些大致预测的行为都被认为是“通神”,其实核心在于对天气数据的海量占有和分析能力。但假如全人类的所有基础及行为数据全部被占有全部能分析呢?比如通过智能终端LBS功能采集全部运动轨迹、通过金融系统采集所有支付记录、通过SNS采集所有社会关系和通过邮件、文档、社会视频监控和自我视频监测采集所有言行记录,24小时,每分每秒,一生,全地球70亿人,那会如何?
3:<大数据>
由徐子沛编写,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。
全书讲述的,是大数据在美国政府管理中的应用,以及美国政府运行方式大数据变革的历史与斗争,其实也是故事性的。从奥巴马上台就颁布《信息公开法案》,到设立第一个美国政府首席信息官开始,讲述美国政府与民间在社会数据公开的斗争史,以及美国社会管理向大数据思维转变的过程。首先,这算是一个最详实的案例;其次,这代表的不是某种管理方式变革,深处是对民主运行机制的变革与进步。说好了,这本书用心良苦,远远超越科普技术领域;说坏了,其心可诛。有一段,民间斗争,逼迫奥巴马公布所有每日白宫全部日程,包括接见了谁、谈话的全部内容,这不就是个人大数据全公开在公众人物上的应用吗?这可比现在所谓官员公开财产的要求高了几十倍——这要求政府全部行为、全部数据、全部公开,全体公众随时可查——技术和成本上其实已经可以做到或至少努力接近——如果不这么做,不止是落后问题而是真正的其心可诛了。
4:<大数据基础与应用>
由陈明编写。看名字就知道,入门级别拯救小白的书。这本书共17章,第1章是对大数据的简单概述,第2章介绍大数据研究的方法论,第3、8、9、14章介绍大数据的生态环境,第17章介绍数据科学的内容,剩下的章节是本书重点,介绍大数据技术及应用方法。
身处大数据大环境下,身边的人经常讨论数据库、数据可视化、大数据预处理等等。这些词听得多了会让人产生错觉——自己已经知道里面的门道了。但事实上还是个“门外汉”。
举个例子,没有人肯在上千人规模的讲座上专门花半个小时教你怎样进行数据清洗。本书专门列了一章,详细介绍大数据预处理技术,包括数据清洗的实现方式,从步骤到检验,都做了用心的阐述。诸如此类,数据挖掘、大数据流式计算、Hadoop、NoSQL等等都从最基础的点做了详细介绍。耐心看完这些,再往深处进阶就不会那么吃力了。
5:<一本书读懂大数据>
进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
5:<集体智慧编程>
入门,浅显易懂,里面每一章都是一个案例,但是很方便,有具体的代码,用来入门最好。
6:<社交网络的数据挖掘>
专门做社交网络的数据挖掘,案例很丰富,有代码。
7:<数据可视化之美>
致力于介绍各种可视化方案。
8:<鲜活的数据>
比较简单的可视化,不过内容丰富,有代码。
9:<数据挖掘导论完整版>
看完上述的书,对大数据产生很大的兴趣,已经初步入门了,现在开始理论方面的学习,数据挖掘入门教程,个人觉得写的很好,目前正在研究这本书,努力。。。
10:<统计学习方法>
这本书比较深,刚开始看的就是这一本,不过太深,看到一半,准备在导论看完之后,在看这本书提升一下自己。
11:<鸟哥私房菜—基础篇>
作为一个计算机专业linux那是必学的,而且Hadoop是建立在Linux基础上的,不求多么的精通,但是基础的操作要学会。
如果是没有任何编程语言基础的想入行大数据的话,是必须要学习java基础的,虽然大数据支持很多开发语言,但是企业用的最多的还是java,接下来学习数据结构,关系型数据库,linux系统操作,有了基础之后,在进入大数据学习,可以给小白学习的体系。
第一阶段
COREJAVA(加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型
运算符、循环
算法
顺序结构程序设计
程序结构
数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常
File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述
安装Linux操作系统
图形界面操作基础
Linux字符界面基础
字符界面操作进阶
用户、组群和权限管理
文件系统管理
软件包管理与系统备份
Linux网络配置
(主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计
SQL语句
Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm实时数据处理平台
Spark平台
若之前没有项目经验或JAVA基础,掌握了第一阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;
第二阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来,当然薪资不能有太高的要求;
前两个阶段都服务于第三阶段的学习,除了熟练掌握这些知识以外,重点需要找些相应的项目去做,不管项目大小做过与没有相差很多的哦!掌握扎实后可直接面对企业就业,薪资待遇较高!

㈣ 大数据入门书籍有哪些

1:<大数据时代>
这是学习大数据必读的一本书,也是最系统的关于大数据概念的一本书,由维克托·迈尔-舍恩伯格和肯尼斯·库克耶编写,主要介绍了大数据理念和生活工作及思维变革的关系。
它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。
2:<爆发>
由巴拉巴西编写,主要讲了在一个历史故事的连续讲述中,了解大数据的概念实质。从大数据的历史开始,能更深入的了解大数据的发展历程。
巴拉巴西整本书讲述的大数据根本目的,是预测。他甚至有零有整地判断,人类行为93%是可以预测的。打个比方,千百年前人类无法如今天般准确预测天气,以致某些大致预测的行为都被认为是“通神”,其实核心在于对天气数据的海量占有和分析能力。但假如全人类的所有基础及行为数据全部被占有全部能分析呢?比如通过智能终端LBS功能采集全部运动轨迹、通过金融系统采集所有支付记录、通过SNS采集所有社会关系和通过邮件、文档、社会视频监控和自我视频监测采集所有言行记录,24小时,每分每秒,一生,全地球70亿人,那会如何?
3:<大数据>
由徐子沛编写,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。
全书讲述的,是大数据在美国政府管理中的应用,以及美国政府运行方式大数据变革的历史与斗争,其实也是故事性的。从奥巴马上台就颁布《信息公开法案》,到设立第一个美国政府首席信息官开始,讲述美国政府与民间在社会数据公开的斗争史,以及美国社会管理向大数据思维转变的过程。首先,这算是一个最详实的案例;其次,这代表的不是某种管理方式变革,深处是对民主运行机制的变革与进步。说好了,这本书用心良苦,远远超越科普技术领域;说坏了,其心可诛。有一段,民间斗争,逼迫奥巴马公布所有每日白宫全部日程,包括接见了谁、谈话的全部内容,这不就是个人大数据全公开在公众人物上的应用吗?这可比现在所谓官员公开财产的要求高了几十倍——这要求政府全部行为、全部数据、全部公开,全体公众随时可查——技术和成本上其实

㈤ 大数据的英文是什么

译文:big data

重点词汇:data

英['deɪtə]

释义:

n.数据;资料

n.(Data)(日)驮太(姓);(印、葡)达塔(人名)

短语:

Big Data大数据;海量资料;海量数据

(5)大数据的英文书扩展阅读:

词语使用变化:big

adj.(形容词)

1、big作“大”解时,形容物时指体积、面积、范围、容量和重量等“大”;形容人时侧重指身大体胖或辈分大,用于儿童则含“长大成熟”之义,有时也指大人物。当抽象名词不表示一般概念而表示某一具体内容时也可用big修饰。big用在口语中还可表示“宽宏大量的”。

2、big与on连用意思是“精于,热衷于”;与with连用有“充满…的”意思,引申可表示“快要生育”。

3、big and可修饰后面的形容词,其意思不是“大得和…”,而是“非常”,即very。

㈥ 求一篇关于大数据的外文文献加翻译,翻译后的字数在3000到5000,或者其他关于数据库的也行,必重赏啊

童鞋你好!
这个估计需要自己搜索了!
网上基本很难找到免费给你服务的!
我在这里给你点搜索国际上常用的外文数据库:
----------------------------------------------------------
❶ISI web of knowledge Engineering Village2
❷Elsevier SDOL数据库 IEEE/IEE(IEL)
❸EBSCOhost RSC英国皇家化学学会
❹ACM美国计算机学会 ASCE美国土木工程师学会
❺Springer电子期刊 WorldSciNet电子期刊全文库
❻Nature周刊 NetLibrary电子图书
❼ProQuest学位论文全文数据库
❽国道外文专题数据库 CALIS西文期刊目次数据库
❾推荐使用ISI web of knowledge Engineering Village2
-----------------------------------------------------------
中文翻译得自己做了,实在不成就谷歌翻译。
弄完之后,自己阅读几遍弄顺了就成啦!
学校以及老师都不会看这个东西的!
外文翻译不是论文的主要内容!
所以,很容易过去的!
祝你好运!

㈦ 《Spark大数据分析实战》epub下载在线阅读,求百度网盘云资源

《Spark大数据分析实战》(高彦杰)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1bj5iuivyA6Z6mrWLRuP2PQ

密码:96vs

书名:Spark大数据分析实战

作者:高彦杰

豆瓣评分:5.2

出版社:机械工业出版社

出版年份:2016-1-1

页数:213

内容简介:

本书一共11章:其中第1~3章,主要介绍了Spark的基本概念、编程模型、开发与部署的方法;第4~11章,详细详解了热点新闻分析系统、基于云平台的日志数据分析、情感分析系统、搜索引擎链接分析系统等的应用与算法等核心知识点。

作者简介:

高彦杰,毕业于*国人民大学,就职于微软亚洲研究院。开源技术爱好者,对spark及其他开源大数据系统与技术有较为深入的认识和研究,实践经验丰富。较早接触并使用spark,对spark应用开发、spark系统的运维和测试比较熟悉.深度阅读了spark的源代码,了解spark的运行机制,擅长spark的查询优化。

曾著有畅销书《spark大数据处理:技术、应用与性能优化》。

倪亚宇,清华大学自动化系在读博士研究生,曾于微软亚洲研究院、IBM研究院实习。对大规模的推荐系统和机器学习算法有较为深入的研究和丰富的实践经验。

㈧ 大数据用英文怎么说

大数据(big data)指规模巨大且复杂,用现有的数据处理工具(on-hand database management
tools)难以获取(capture)、整理( curate)、管理(
manage)以及处理(process)的数据信息统称。大数据的特点可以总结为4V:volume(大量)、velocity(高速)、variety(多变)、veracity(准确)。

阅读全文

与大数据的英文书相关的资料

热点内容
模具绘图自学教程 浏览:753
怎样避免u盘吞文件 浏览:320
另存为图层文件为什么导入无效 浏览:340
怎么把文件标题复制到excel 浏览:755
编程软件用什么编辑 浏览:993
ab编程plc怎么让绿灯闪烁3秒 浏览:171
linux查找五天内的文件 浏览:676
目标文件载入单片机需要什么软件 浏览:745
猪八戒网网站怎么注册 浏览:725
为什么手机文件传不到微信 浏览:212
哪个网站考公务员 浏览:164
建筑方案设计教程 浏览:600
郑州哪里儿童学编程比较好 浏览:105
Mac登陆密码怎么改 浏览:388
硬盘什么情况恢复不了数据 浏览:966
苹果mac开windows界面 浏览:752
云盘的文件夹怎么发到u盘 浏览:87
手机主板修理专用工具 浏览:230
web服务器开发pdf文件 浏览:706
word保存前的文件 浏览:618

友情链接