⑴ 大数据,给健康产业带来哪些变革
大数据,给健康产业带来哪些变革_数据分析师考试
你发的每一条微信,打的每一通电话,也许就能预警你是否有感染流行病的风险……这不是科幻,这是全世界已经起步开展的大数据精准医疗。
日前,浙大一院正式成立“精准医疗中心”,中国工程院院士、浙大一院传染病诊治国家重点实验室主任、感染性疾病诊治协同创新中心主任李兰娟教授作了“医疗健康大数据与精准医学”的专题报告。
“精准医疗大数据的普及化,正带来中国乃至全球健康产业的变革。”在接受钱报记者专访时,李兰娟表示,不远的将来,大数据支持下的精准医疗将为每一个病人定制治疗方案,它也将改变国家的医疗投入的格局。
精准医疗
提供个性化治疗
大数据技术,能够分析大量繁杂的数据集,发现疾病和治疗手段之间的有效联系,它将改变传统的治疗方案。
美国提出精准医疗的计划,利用大数据的分析,找出个性化的缺陷,真正对症下药,因人而异。这个办法帮助乔布斯延长了几年的生命。
我们国家的精准医疗研究,也在积极跟进。2014年7月,李兰娟和团队在《自然》杂志发表了科研成果论著,揭示肠道菌群与肝硬化的秘密,给全球医学科技研究提供了新思路。
一直以来,很多肝硬化患者,都接受过抗生素的治疗,但是李兰娟和她的团队发现,这样做并不能带来很好的效果,因为抗生素不仅杀死了肠道内的有害细菌,有益细菌同样也被杀死了。
肠道微生物是提供人体营养、调控肠道上皮发育和先天性免疫的不可缺少的“器官”,她把注意力聚焦在“肠道菌群”上,经过近3年时间的研究,他们收集了181个中国人肠道菌群的样本,其中98个是肝硬化患者的粪便样本,83个来自健康志愿者。
团队采用了新一代测序技术、以及大数据分析技术,产出了近860GB的序列数据,通过研究发现了28种与肝硬化病人密切相关的“坏细菌”;数据比对还显示,有38种与健康人密切相关的“好细菌”,在肝硬化病人肠道菌群中的量却非常少。
这就意味着,今后针对肝硬化病人的治疗,可以做到更加精准,“我们会给肝硬化病人补充更多的‘好细菌’,杀死过高的‘坏细菌’。”李兰娟说,在药物基因组学的基础上,这个工作还能够做得非常精准,“针对不同病人,运用合适的药物,合适的剂量。”
“精打细算”的
外科手术
大数据技术已经开始在外科手术中,帮助病人得到更加高效的手术疗效。
中国工程院院士、浙大一院院长郑树森教授,是我国著名的器官移植专家。到目前为止,他带领团队已经成功进行了200余例活体肝移植手术。
肝脏是人的造血器官,“统帅”了成千上万根血管,对肝脏动手术,是有高难度的。
在先进的数字技术支持下,郑树森团队能够在活体肝移植在术前和术中,利用虚拟现实软件,查看病人肝脏中的各种构造。大数据分析还能够精准计算出需要移植的肝脏部分,一方面确保提供给受捐者充足的供血,能够存活;同时评估受捐者剩下的肝脏,能否在半年内长出新的肝脏,保证恢复正常的肝功能。
在世界各地,具有大数据处理功能的手术器械已经成为外科医生强有力的助手。比如,在摘除肿瘤组织的外科手术中,外科医生遇到的最大挑战是:一次手术是否能够把癌变组织切干净。像乳腺癌肿瘤的手术中,有将近三分之一都无法做到完全抹除肿瘤的痕迹。
前不久,伦敦大学帝国学院Zoltan Takats 探索了一场“精准手术”,手术使用的先进武器iknife,在传统手术刀前安装传感器和质谱分析仪,刀起落下iknife能在第一时间告知病灶的边界和性质。
大数据
指导医疗政策
大数据能够更加科学地论证药物使用的效果,为医疗政策指导方向。
2012年,李兰娟曾经带领团队做了一个跟乙肝传染率相关的课题,采集了浙江1000人次的体检数据样本。通过分析发现:当年20岁(1992年出生)以上的样本,乙肝感染率在8%-10%;而20岁以下的样本中,乙肝感染率小于1.5%。
为什么只相差一岁,乙肝感染率就有那么大的差距?
1992年这一年,是个关键词。1992年,卫生部将乙肝疫苗纳入计划免疫管理。通过大数据技术分析,李兰娟团队验证了药物的有效性,这样的分析结果,将给国家制定公共卫生政策,带来科学的指导。
“如果我国继续保持对新生儿进行乙肝疫苗的全面接种,同时成年人也尽快接种乙肝疫苗,那么在十年后,中国将摆脱肝炎大国的帽子。”李兰娟说。
开发大数据
预测疾病
有了大数据的分析,“看医生”模式正在转变为“被医生看着”——你的可穿戴设备能够做到24小时给你“做体检”,这种全数据模式成本低,效率却很高,几乎所有人都可以用。
“精准医疗的长期目标,是每个人的健康管理。” 接下去,李兰娟团队将在浙江创建一个人数规模超过100万的志愿者队列,他们愿意共享他们的基因数据、生物样本、生活信息以及所有的电子健康信息。
这是一个融合参与者、有责任的数据共享以及隐私保护的新型研究模型。基于这份健康大数据,浙大一院团队将能够做一系列新研究,比如药物基因组学研究,医生可以更准确地为每个病人开出合适的药物和合适的剂量;比如为病人设定新的治疗和预防目标。
世界医疗产业最发达的美国,在医疗创业领域冒出了许多基于大数据,做疾病预防方面的高科技产品——
美国人Anmol Madan和团队创立了一个公司,专注研究通过手机的数据分析,预测机主的疾病。
他们对实验参与者手机超过32万小时的数据进行收集分析后,最终能够对人们的手机建模,来预测感冒、精神疾病等等。比如,当人抑郁时,通常就能够在与人交流中被看出变化,日常数据分析就能够捕捉这些变化。在测试中,这个应用能够正确判断60%~90%人们日常的生理症状和普通呼吸情况,同时把这些变化发通知给机主本人,未来还能发送给朋友或家人。
深度开发大数据,预测疾病,还可能大幅降低医疗保健的费用。麦肯锡全球研究院报告,如果美国医疗保健行业对大数据进行有效利用,就能把成本降低8%左右,从而每年创造出3000亿美元的价值。
“在中国,大数据也将影响医改的具体政策,比如医保的投入。
以上是小编为大家分享的关于大数据,给健康产业带来哪些变革的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 大数据在医疗行业的应用面临的挑战有哪些方面
1、数据质量
目前医疗数据的来源主要为医疗机构(例如、医学药学实验室、医疗版康复中心等)和互联网。权采集的数据范 围广、维度高、类型种类繁多且不针对 特定的问题。
2、不确定性的度量问题
目前比较成熟且进入实用阶段的大数 据模型多数都是面向药厂和保险公司的。美国的医疗大数据应用中,面向医生和患 者业务通常较难,很难找到合适的切入点。面向企业的业务相对容易,尤其是针对保 险公司和药厂,而则相对难一些。由于大数据模型精度有限,在安全性要求极 高的和医生中其实用价值非常有限,例如,一个95%准确度的模型对医生来说可能仍然不够精确,因为医生在决策时是针对患者个体的,而不是基于统计意义的。
另外,统计学习模型的可解释性也较差,往往只有统计学家和计算机科学家才能精确完整地解释模型,而对于模型真正的使用者如医生和政府官员等存在巨大的障碍。
⑶ 大数据时代带来更理性、更可靠的决策
大数据时代带来更理性、更可靠的决策_数据分析师考试
究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?在我们寻求对这些重要问题的解答时,牛津大学网络学院互联网研究所教授维克托·迈尔-舍恩伯格出现在我们的视野中;希望我们对他的采访,可以帮助读者们找到这些疑问的答案。
最近一段时间,“大数据”的热潮席卷全球,正如美国《福布斯》杂志所说的那样,如今,在浏览新闻网站或者参加行业会议时,想看不见或听不到“大数据”这个词几乎不可能。去年,美国6个联邦政府部门宣布将启动“大数据研发计划”,投资超过2亿美元以改进从海量和复杂的数据中获取知识的能力。同时,我国科技部发布的“‘十二五’国家科技计划信息技术领域2013年度备选项目征集指南”也把大数据研究列在首位。眼下召开的全国“两会”上,有全国人大代表提出要把发展“大数据”上升为国家战略。
究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?眼前对“大数据”的关注度是否已经过高了呢?在我们寻求对这些重要问题的解答时,英国牛津大学网络学院互连网研究所教授维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)出现在我们的视野中,讨论“大数据”,他如果不是最合适的人选,也起码是合适人选之一。
20多年来,维克托一直致力于网络经济、信息与创新、信息监管、网络规范与战略管理的研究。还在“大数据”这一概念众说纷纭时,维克托就已进行了系统深入的研究,2010年,他在英国《经济学人》杂志上和数据编辑肯尼思·库克耶一起,发表了长达14页的大数据专题文章。称他为最早洞见大数据时代发展趋势的数据科学家之一,并不为过。
《经济学人》说,在大数据领域,维克托是最受人尊敬的全方位发言人之一;美国《科学》杂志说,若要发起一场关于这个问题的深入讨论,没有比他更好的发起者了。
除了理论研究以外,维克托还非常接近实战世界,早在上大学期间,他就先后成立了两家数据安全和制作反病毒软件的公司,而在他写就的《大数据时代》一书中,那些最前沿、最崭新的大数据应用案例,都得益于他多年来紧跟企业与商业应用的步伐。他的咨询客户中,不乏微软、惠普、IBM、亚马逊、脸书、推特、VISA等大数据先锋们。
目前,维克托还是欧盟互联网官方政策背后的重要制定者与参与者,尤为重要的是,他还任职过新加坡商务部、文莱国防部、科威特商务部等部门,特别熟悉亚洲信息产业的发展与战略布局。
希望我们通过电子邮件对维克托的采访,可以帮助读者们找到这些疑问的答案。
失去微观层面上的精确度,为的是获取宏观层面上的洞察力
文汇报:今天,“大数据”已经成为全球炙手可热的词汇,您是从何时开始关注它的?
迈尔-舍恩伯格:多年来,我一直致力于研究数据在信息经济的发展中所扮演的重要角色,我与肯尼思·库克耶(Kenneth Cukier,我的合著者)一起发布了一系列相关研究报告。大约三年前,在我自己组织的一次会议上,我俩都意识到“大数据”的存在已经不仅仅是一种炒作或者什么宏大的宣言了,而将实实在在地改变我们的工作、生活以及整个社会,于是,我们决定就此专题写一本书。
文汇报:那么在您看来,究竟什么是大数据时代?它和传统数据时代到底有什么差别?我们知道,像沃尔玛这样的公司早在多年前,就已经将大数据运用到了商业实践中。
迈尔-舍恩伯格:事实上,过去几个世纪以来,数据已经在科学家们制定决策的过程中扮演了一定的角色,而过去几十年间,这一做法又延伸到了一些公司的决策制定过程。但在大数据时代之前,数据是非常匮乏的,我们拥有的数据非常少。因此,我们的决策、我们构建的制度都是建立在这样一种数据匮乏的基础上。今天,一切变得非常不同,它体现在三个不同的方面,我们称之为“更多”、“更乱”和“相关性”。
文汇报:这三个特征也是您在《大数据时代》一书中非常强调的,它们甚至会颠覆我们过去的整个思维方式。您能否具体描述一下这到底是怎样的过程?
迈尔-舍恩伯格:好的。我所说的“更多”,是指围绕任何一个我们想要调查的特定问题,或者是需要我们回答的疑问,我们都可以比过去任何时候获取更多的数据。在大数据时代,我们可以利用海量的数据得到非常详尽的见解,这是传统方法所不能做到的。
可以这么说,大数据时代和传统数据时代的区别,就像分辨率在200万像素的旧数码照片,一下子提高到2400万像素那样。后者是一个非常非常大的文件,它可以提供更多细节。它可以让我们不断放大,看清楚小到颗粒状的细部,而具有较低分辨率的图像在这些细节方面就会非常模糊。
基因信息就是一个很好的例子。美国有一家叫23andMe的新公司提供个人的DNA测试分析,以发现一些疾病征兆。它的成本只有两三百美元,并提醒客户关注会发展成严重疾病的个人癖好。但是公司并不对每个客户的全基因组进行测序,而是针对已知特征的位点(经研究得知因某种疾病存在,而可能会出问题的DNA片段)进行比对。这意味着,当一个新的特征被研究发现时,23andMe公司就不得不再次对客户的DNA进行测序并建立更完整的档案。
苹果公司的史蒂夫·乔布斯尝试了非常不同的方法。他得了癌症后,就有了自己全部的基因密码,数十亿的碱基对测序。这花费了他超过10万美元的成本,但这可以让医生完整地洞察他的基因密码。每当药物由于乔布斯的癌症病变而失去有效性,他们就可以根据乔布斯特定的基因信息,寻找到有效的替代药物。遗憾的是,这也没有保住乔布斯的命,但是在这一过程中获得的数据,已经延长了他的生命。
由于技术创新,现在收集大量信息的成本变得越来越低。数年前,史蒂夫·乔布斯花费了六位数的金额才做到的事情,今天,不到1000美元就可以获得同样的服务了。
而“更乱”指的是,在小数据时代,因为数据是如此稀少,我们可以确保自己收集的每一个数据点都是非常准确的。相比较而言,大数据往往是凌乱和质量参差不齐的。但是,相比以高额代价来保证测量和收集少量数据的精确性,在大数据时代,我们将接受这种杂乱,因为我们通常需要的只是一个大方向,而不是努力了解一种现象的细枝末节。我们并不是要完全放弃精确性,我们只是放弃对精确性的热衷。我们失去微观层面上的精确度,为的是获取在宏观层面上的洞察力。
电脑翻译就是其中一个例子。1990年代,IBM的研究人员使用了一套非常精确的文件(加拿大议会记录的法语和英语版)来训练计算机。尽管计算机完全按照规则行事,但基于此的翻译质量却非常低。然后,谷歌在2006年开始介入这一领域,他们没有使用来自加拿大政府的几百万句标准翻译,而是使用随手可得的任何语言。他们在整个互联网上,利用数十亿页质量参差不齐的翻译,这些翻译不怎么标准——但是,这是一个小的权衡——他们能够使用的数据大大增加了,结果翻译质量反而提高了。与更少、更标准的数据相比,更多凌乱的资料完胜了。
“更多”和“更乱”组合到一起,产生了第三个特点,“相关性”,这也是大数据带给我们的最根本性的转变。我们的思维将从因果关系转向相关关系。至今为止的整个人类历史里,全世界的人们都在寻找事件发生的原因,探寻“为什么”。但我们对原因的执着探索往往带领我们走向错误的方向。所以,我们建议,在大数据时代,在许多情况下,我们可以仅仅寻找“是什么”,而不必完全理解“为什么”。例如,对于大数据的分析中,我们可以发现机器震动中一些非常微小的变化,这些变化表明机器将很快损坏。这使我们能够在部分机器零件报废前更换它们,这被称为“预测性维护”,它可以节省不少钱。但除了提高消费效率,“相关性”还可以做更多的事情。
比如对早产儿而言,即使他们长大成人,这些小宝宝仍旧是非常脆弱的,哪怕是遇上很小的感染。医生卡罗琳·麦格雷戈研究如何给这些婴儿最好的生存机会。使用大数据分析,每分钟可以搜集这些婴儿超过一千个数据点,麦格雷戈发现一个令人震惊的事实:每当这些早产儿出现非常稳定的标志时,他们的身体其实并不稳定,正在准备发病。有了这方面的知识,她就能在一个非常早期的阶段,确定婴儿是否需要药物治疗,从而挽救更多孩子的生命。
这是典型的大数据应用:医生麦格雷戈通过更全面的传感器,可以比以往搜集到更多的数据。她也接受,在这种情况下,并不是所有的数据都是准确的,从而也会导致她分析中存在不精确的可能。她把“为什么”这个问题放在一边,而用一种更务实的方式来提供帮助,她寻找“是什么”,这才是一个更好的预见感染的办法。
我们应该记住:大数据也可以挽救生命。
正确使用大数据,可以改善医疗、教育水平,促进人类发展
文汇报:大数据时代的到来,是否将会引领新一轮的产业革命?我们应该怎样客观地看待它的价值?
迈尔-舍恩伯格:大数据将会极大地改变社会生活的方方面面,但是它的价值能否等同于工业革命,这个问题目前还不好说。我个人猜想可能不能,原因是在19世纪初工业革命刚刚开始的时候,经济发展还处于非常低的水平上,所以相对来说,当时的人们从工业化过程中所能获得的生活水平的提升是非常巨大的,今天则非常不一样了。
我们真正想强调的是,大数据时代将推动我们从根本上改变企业的运作方式,以及我们在社会中的生活方式。大数据可以提高人类制定决策的能力,这种提高将是大幅度的。有了大数据,我们不是简单地提高经济效率,而是将挽救人类生命,延长我们自己的寿命。我们还将改善教育,促进发展。同样的道理,我们必须要小心。大数据同样也有“阴暗面”,正如我们在书中讨论的那样。如果应用错误,大数据也可能会化为一个强有力的武器。因此,我们必须确保正确使用大数据。
文汇报:您提到了大数据时代的“阴暗面”,它的到来会加深数字化鸿沟吗?
迈尔-舍恩伯格:大数据是一个强大的工具。因此,如果我们使用了错误的方式,它就可能会加深数字鸿沟。但是,如果我们用得好,相信大数据就可能会改善我们的生活,尤其是对那些不那么幸运的人而言。在这一点上,你可以把它想像成火、电或是抗生素等等。
文汇报:也就是说,您对大数据的价值认知,是基于一个更长时段的历史发展。
迈尔-舍恩伯格:如果以非常广阔的视角来看人类历史,我认为,人类一直想要理解世界。起初,许多人的“知识”是基于迷信和预感。知识的发展非常慢,人们需要非常深层次的思考,再通过实践进行检验,以确保知识是可用的。
但即使如此,我们的知识仍旧不是百分之百可靠的。例如,19世纪,路易·巴斯德一直在研究狂犬病疫苗,当时有一个被狗严重咬伤而染上狂犬病的小孩,父母担心孩子会死去,恳求巴斯德试试他的试验性疫苗。巴斯德照做了,孩子活了下来。随后的庆祝活动上,巴斯德以一个英雄的身份出现,他挽救了年轻孩子的性命。但是事实的确如此吗?今天,通过更深入的研究,我们知道,在被类似病狗咬到的儿童中,只有25%会感染狂犬病。所以75%的儿童哪怕使用了无效的疫苗,仍旧可以存活下来。这个故事告诉我们,我们以为自己生活在非常科学的世界中,但其实,我们拥有的数据非常少。一种新的治疗方法在被证明安全之前,需要做几十个甚至几百个医学实验来进行测试。但这仍旧太少,人们还是会受到伤害,因为我们依靠的数据太少。在大数据时代,我们可以告别数据匮乏,做出的决策将更理性,更基于事实,当然也更可靠。这是大数据时代带给我们的希望——更好的决策将会代替我们过往那些可疑的迷信和不可靠的人类预感。
文汇报:我们看到,麦肯锡公司2011年就发布报告推测,如果把大数据用于美国的医疗保健,一年可产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。“数据创造价值”的预测已经非常振奋人心。在您看来,大数据是否只是一门价值不菲的生意?
迈尔-舍恩伯格:不,大数据可以做更多。医疗方面,我们前面已经提过,只是分析一些重要的征兆,早产婴儿的感染出现明显症状的数小时前,医生就可以预见其生病。
同样,通过大数据分析,我们也可以找出学校教科书中的哪一部分对学生而言效果最好,也可以找出效果不好的部分。到现在为止,我们只能按照人类的预感,即教师自己判断学生在理解特定课程时是否会有疑问;但在大数据时代,我们有实际的数据可以参考,例如数据显示,电子书籍的某些页面被看过许多遍,因为它让学生感觉费解,据此可以调整我们的教材。这将从根本上改变教育。
或者举公共政策为例:Inrix是为智能手机提供导航软件的公司,它还提供实时的交通数据。之所以能做到这一点,是因为每个用户本身都成为了交通流量状况的传感器,把位置和速度信息都发回Inrix公司。这样一来,就可以给行进在交通堵塞路段周围的客户提供良好服务。Inrix公司有一大堆人们的活动数据,这还将有助于城市规划者了解大家的通勤模式,人们从哪里出发去工作,然后返回,并建设基础设施,如道路和铁路。这是最有效的应用。节省钱的同时,也有利于整个社会的管理。
文汇报:大数据对于商业决策、学术研究乃至国家治理的作用是显而易见的;但是对日常生活中的普通人而言,他们一定会从中受益吗?为什么在大数据时代,还是有不少人主张远离过载的信息和数据、返璞归真回到传统的社群生活之中呢?个人生活空间一定得从“简单平面”转变到“多维存在”才有意义吗?
迈尔-舍恩伯格:千百年来,人类已经经历的世界,都是在少量数据的基础上产生很多想法的世界。海员们结束长途航行后回来,地图才会在这一次经验的基础上进行重新绘制。这显然不会很精确。经过试验和犯错的周而复始,人类发展得非常缓慢。但是,当我们只有非常少的数据时,这是理所当然的结果。今天,我们有这么多的数据,难怪人类会不堪重负。但是,现在大数据可以提供帮助。如果人类不太善于消化这些过多的信息,大数据分析可以帮助我们将信息进行过滤,并进一步可视化,使我们能够轻松地加以使用。
人们尚未普遍具备与大数据时代相匹配的思维和技能
文汇报:有专家认为,大数据的未来是数据的APP(加速并行处理)而非基础构架;也就是说,仅仅有数据平台和基础构架是无法创造长期价值的。对此您怎么看?
迈尔-舍恩伯格:我们认为,大数据时代将至少需要和过去时代一样多的人的独创性。同时,巨大的资源才是未来时代的金矿,那些拥有这些数据资源的人将获得的回报是不可想像的。
文汇报:大数据时代,数据都是透明的,我们如何在保护个人隐私、商业机密和国家安全之间取得平衡?您所谓的“互联网遗忘运动”会是最佳药方吗?
迈尔-舍恩伯格:大数据时代所面临的挑战是,我们发现了隐藏在数据背后的价值,所以,保留这些数据,然后一遍遍地重复使用数据,往往成为一种明智的选择。同时,现行的保护个人隐私的法律,特别在西方,针对的是一个传统数据的世界,而不是一个大数据世界。这就需要我们在保护隐私的规则方面作出调整。我们建议,可以通过调整相关保护规则来实现这一目标,正像你所提到的,我们可以在一定时间以后,选择遗忘这些数据。
文汇报:大数据时代是一个海量数据有待处理的时代,同时又是一个海量无用信息需要删除的时代。这是否就是您在《删除》一书中强调我们要有所取舍的原因所在?
迈尔-舍恩伯格:是。在某种程度上,大数据本身也可以加强隐私的保护。因为如果有一百万个数据点,一个单独的数据点就不再那么重要了,这和传统数据时代非常不一样。随着时间的推移,忘记其中一些数据,并不会破坏整个大数据的运行和使用。
文汇报:大数据现在在全球究竟发展到了什么阶段?处理大数据的技术是否已经在全世界范围内普及?
迈尔-舍恩伯格:管理和处理大数据的技术都已经存在了,而且并不是非常昂贵。但是,有一样东西目前仍旧非常缺乏,那就是我们的思维——以理解数据背后所隐藏的巨大价值,以及提取这种价值的专门技能。今天,全球范围内,人们还没有普遍具备这种思维和技能,但是我相信,在未来,这种情况会发生改变。我们预计,世界各地的许多大学将提供针对大数据分析的课程,来培训大数据时代所需要的技能。
文汇报:历次产业技术革命,中国似乎都是学习者和模仿者;和上几轮产业技术革命不同的是,大数据时代,中国几乎和欧美发达国家同时开始技术研发,中国人口又居世界首位,将会成为产生数据量最多的国家。您看好中国在新时代的发展前景吗?中国在大数据时代是否有创新和领先的可能?
迈尔-舍恩伯格:是的,我们对此非常乐观。中国很可能成为大数据这一领域的先驱。在大数据时代,中国有很多优势:中国人都受过良好的教育,特别是在数学和统计方面(这是非常重要的)。中国是一个巨大的多元化社会,这会创造大量机会来创造大数据这一资源,并建立大数据应用。同样的道理,对于大数据的蓬勃发展,我们还需要相匹配的思维方式,有尝试新事物和持续创新的愿望,以实证事实来作为我们决策的依据。因此,和许多其他社会一样,大数据时代的确也会给中国带来非常大的变化。
以上是小编为大家分享的关于大数据时代带来更理性、更可靠的决策的相关内容,更多信息可以关注环球青藤分享更多干货
⑷ 大数据时代来袭企业宜加紧布局
大数据时代来袭企业宜加紧布局
“大数据”,这一新兴概念,正在被赋予极其丰富的内涵,并被寄予特别巨大的希望……大数据时代,我们该如何寻找对策,迎接挑战?得大数据者得天下,是一些推崇大数据时代的变革者坚信不疑的判断。很多专家认为,在大数据时代,谁能有效地垄断数据,谁就有可能成为世界霸主。
大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。根据麦肯锡预测,如果具备相关的IT设施、数据库投资和分析能力等条件,大数据将在未来10年,使美国医疗市场获得每年3000亿美元的新价值。
人类正在迈入大数据时代
关于“大数据(BigD ata)”,麦肯锡全球研究所在报告《大数据:创新、竞争和生产力的下一个前沿》中定义:大数据,是指大小超出了传统数据库软件工具的抓取、存储、管理和分析能力的数据群。也有专家认为,大数据的“大”是指大型数据集,即数据量一般在10T B规模左右;多个用户把多个数据集放在一起,形成PB级的数据量;同时,这些数据又来自多种数据源,并以实时、迭代的方式来实现,即“大数据=海量数据+复杂类型的数据”。
我们正处在一个数据爆发增长的时代。移动互联网、移动终端和数据感应器的出现,使数据以超出人们想象的速度在快速增长。据国际数据资讯公司(G lobalPulse)估测,数据数量一直在快速增加,每年增长50%,这个速度不仅是指数据流的增长,而且还包括全新的数据种类的增多。
有研究统计,从人类文明开始到2003年,人类共创造了5T B(兆亿字节)的信息。而现在,这样的数据量却仅需两天就能够被创造出来,且速度仍在加快。由此可见,我们的确已经迈入了大数据时代。
世界各国加紧大数据布局
世界上许多国家都已经认识到了大数据所蕴含的重要战略意义,纷纷开始在国家层面进行战略部署,以迎接大数据技术革命,正在带来的新机遇和新挑战。
“大数据资源”成为重要战略资源
互联网时代,“资源”的含义正在发生极大的变化,它已不再仅仅只是指煤、石油、矿产等一些看得见、摸得着的实体“大数据”,也正在演变成不可或缺的战略资源。互联网、物联网每天都在产生大量的数据,这些庞大的数据资源,为人们依据数据了解世界、了解市场、了解人们的生活提供了可能。大数据已经被视为一种资产、一种财富、一种可以被衡量和计算的价值。得大数据者得天下,是一些推崇大数据时代的变革者所坚信不疑的判断。
“大数据安全”上升为国家安全
传统意义上的国家安全,是指军队对国家领土安全的保护,是国家之间军事实力的较量。但在互联网高度发达的大数据时代,网络变成了几乎是透明的虚拟世界,也因此使国家安全的环境和内涵发生了极大的变化,对大数据的安全保存、防丢失和防破坏等问题,成为我们必须要面对的安全难题。大数据安全,已经上升成为国家安全的重要组成部分。
在大数据时代,数据安全的威胁随时都有可能发生。各种国家信息基础设施和重要机构所承载着的庞大数据信息,如由信息网络系统所控制的石油和天然气管道、水、电力、交通、银行、金融、商业和军事等,都有可能成为被攻击的目标。
此外,大数据也为网络恐怖分子提供了新的资源支持,有可能使恐怖分子通过网络侵入到人们工作生活的方方面面,并通过威胁、攻击、破坏,瘫痪民用或军事基础设施等手段,达到其制造心理恐慌和财产损失,威胁国家安全和社会安全的目的。
“大数据决策”成为一种新决策方式
依据大数据进行决策,从数据中获取价值,让数据主导决策,是一种前所未有的决策方式,并正在推动着人类信息管理准则的重新定位。随着大数据分析和预测性分析对管理决策影响力的逐渐加大,依靠直觉做决定的状况将会被彻底改变。
2009年爆发的甲型H 1N 1流感病毒,谷歌公司就是通过观察人们在网上搜索的大量记录,在流感爆发的几周前,就判断出流感是从哪里传播出来的,从而使公共卫生机构的官员获得了极有价值的数据信息,并做出有针对性的行动决策,而这比疾控中心的判断,提前了一两周。美国的Farecast系统,它的一个功能就是飞机票价预测,它通过从旅游网站获得的大量数据,分析41天之内的12000个价格样本,分析所有特定航线机票的销售价格,并预测出当前机票价格在未来一段时间内的涨降走势,从而帮助虚拟乘客选择最佳的购票时机,并降低可观的购票成本。
“大数据应用”促进信息技术与各行业深度融合
有专家指出,大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。从科学研究到医疗保险,从银行业到互联网,各个不同的领域都在遭遇爆发式增长的数据量。在美国的17个行业中,已经有15个行业大公司拥有大量的数据,其平均拥有的数据量已经远远超过了美国国会图书馆所拥有的数据量。
在医疗与健康行业,根据麦肯锡预测,如果具备相关的IT设施、数据库投资和分析能力等条件,大数据将在未来10年,使美国医疗市场获得每年3000亿美元的新价值,并削减2/3的全国医疗开支。
在制造业领域,制造企业为管理产品生命周期将采用IT系统,包括电脑辅助设计、工程、制造、产品开发管理工具和数字制造,制造商可以建立一个产品生命周期管理平台PLM (Proct Lifecycle M an-agem ent),从而将多种系统的数据集整合在一起,共同创造出新的产品。
此外,在交通、能源、材料、商业和服务等行业领域,甚至在新闻传媒领域,也都在以大数据为发展契机,加速这些行业与信息技术的深度融合。
“大数据开发”推动新技术和新应用不断涌现
大数据的应用需求,是大数据新技术开发的源泉。在不久的将来,也许很多原来单纯依靠人类自身判断力的领域应用,最终都将被计算机系统的数据分析和数据挖掘功能,所普遍改变甚至取代。一小片合适的信息,也许会促使创新迈进一大步;一组数据,也可能会得到数据收集人难以想象的应用,甚至可能在另一个看起来毫不相关的领域得到应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
⑸ 美国利用大数据进行国家治理的实例有哪些
虽然我没在 美国待过,但是知道一些。
利用大数据的数据分析,已经可以进行信用卡诈骗监测
Google无人车也算是大数据一部分
提前预知犯罪的发生
人脸识别,在公众场所识别犯罪分子。
⑹ AI赋能医疗的背后,临床大数据该如何“跑起来”
19世纪,英国流行病学家、麻醉学家约翰·斯诺运用近代早期的数据科学,记录每天的死亡人数和伤患 人数,并将死亡者的地址标注在地图上,绘制了伦敦霍乱爆发的“群聚”地图,霍乱在过去被普遍认为是由有害空气导致,斯诺通过调查数据的汇总,确定了霍乱的元凶是被污 染的公共水井,并同时奠定了疾病细菌理论的基础,这算是大数据运用的早期雏形之一。
斯诺大概不会想到,在近两百年后,大数据的应用早已不再是偶然,随着医疗卫生信息化的迅速发展,其通过与AI的结合在生物医药研发、疾病管理、公共卫生和 健康 管理等方面的渗透已逐渐常态化,但问题也相应地随之凸显。
信息孤岛仍存
近两年,关于医疗大 健康 数据的政策频出,从顶层设计、具体规划指导、数 据隐私和安全、数据管理等多个方面提出了相关的指导意见。
2016年6月,国务院办公厅下发《关于促进和规范 健康 医疗大数据应用发展的指导意见》指出,鼓励各类医疗卫生机构推进 健康 医疗大数据采集、存储,加强应用支撑和运维技术保障,打通数据资源共享通道,加快建设和完善以居民电子 健康 档案、电子病历、电子处方等为核心的基础数据库。
2018年9月, 国家卫生 健康 委印发《国家 健康 医疗大数据标准、安全和服务管理办法(试行)》,对医疗 健康 大数据行业从规范管理和开发利用的角度出发进行规范。《办法》从医疗大数据标准、医 疗大数据安全、医疗大数据服务、医疗大数据监督四个方面提出指导意见,直击目前医疗大数 据领域的痛点,未来对数据的统筹标准管理、落实安全责任、规范数据服务和管理具有重要意义。
然而,即使有专项政策的支持,但都限于宏观层面,相较于其他成熟领域而言, 健康 医疗大数据领域的法律法规依然存在明显的滞后性,缺乏比较全面、细致、明确的指引和规则,使其的发展受到严重制约。虽然现阶段,已有很多企业在医疗大数据领域进行深耕布局,但受制于市场准入和产业政策的不确定性,目前尚在摸着石头过河,市场热情和活力并未得到充分、有效地释放。
复旦大学上海医学院生物医学研究院教授刘雷认为,正是医疗大数据政策的不明朗,标准的不统一,也直接导致了各个系统之间难以进行数据交换和信息共享,产生了大量的“信息孤岛”。举个简单的例子,患者在A医院拍的片子到了B医院却不认,B医院的医生想要了解患者的信息则需要从零开始,患者曾在A医院做的检查需要在B医院重新再来一轮,“想要打通医疗机构间临床大数据资源的共享通道,至少在现阶段是一件挺困难的事情。”刘雷表示。
相似的困扰也发生在相距超过一万公里之外的美国,华盛顿大学医学院信息研究所所长Philip Paynes在接受医谷采访时表示:临床大数据间的彼此“孤立”给国家医保机构、患者和医院都带来了负担,实现大数据间的互通互用,是全世界范围内都在着力解决的问题。
作为两所顶尖大学的知名研究学者,刘雷和Paynes想在临床大数据领域做一些努力和尝试。
两人共有的想法迅速得到了学校层面的大力支持,2019年7月26-29日,由复旦大学医学院和圣路易斯华盛顿大学医学院联合授课的“应用临床信息学和数据分析研修班”进行了第一次开班。
复旦大学生物医学研究院教授、复旦大学大数据研究院医学信息与医学影像智能诊断研究所所长刘雷授课
据刘雷介绍,此次研修班得到了业界人士的积极响应,在第一届学员中,来自医院、医疗企业、高校各占了三分之一,“就是纯粹地想把对临床大数据分析和感兴趣的业界人士聚集在一起,通过共有的努力,能把临床大数据的有效运用更推进一步。”
圣路易斯华盛顿大学医学院信息学研究所主任Philip Paynes授课
“希望通过这种国际化的合作,能让临床大数据在医疗机构间甚至跨国间真正地’跑’起来多一种可能性。” Paynes说道。
各自所做的 探索
而在这种可能性之前,刘雷和Paynes各自所在的研究机构均已做了大量的工作。
据悉,刘雷所在的复旦大学上海医学院生物医学研究作为一家致力于创建“中国第一、世界一流的生物医学交叉学术研究机构”,已经在生物医学交叉学科领域形成“代谢与肿瘤的分子细胞生物学”、“医学表观遗传学”、“系统生物医学”三个优势方向,并正在努力拓展转化医学研究和精准医学研究,包括老年医学、肿瘤和心血管疾病、出生缺陷、靶点结构与活性小分子、组学和大数据、生物治疗与干预,形成新的交叉学科生长点和下游技术。
另悉,目前,复旦大学上海医学院生物医学研究还在申请一个超算中心的建设项目,以该项目来支撑生物学大数据的研究,“复旦大学有包括中山医院、华山医院、仁济医院等17所附属教学医院,这其中有一些医院也在做自身的临床大数据中心,从研究所层面,希望能够给他们提供一些人才培养和技术研究的有力支持。”刘雷表示。
Paynes所在的华盛顿大学医学院信息研究所则是华盛顿大学所有大数据计划的中心, “我们拥有世界上最好的基因组研究所和最具生产力和影响力的基础科学研究企业”,在医学信息技术方面的能力非常强,但在大数据的整合方面还有待加强。”而这也成了Paynes担任华盛顿大学医学院信息研究所第一届所长之后重点开展的工作。
自Paynes上任后,首先将研究所与旗下15所附属教学医院进行了打通联动,从临床大数据的收集到整合再到挖掘,最后到应用,铺设了一条全链式的临床大数据之路。
在Paynes看来:研究所下属的15所教学医院简直就是大数据来源的宝藏,这15家在全美医疗机构中排名比较靠前的医院每天产生大量的临床数据,依托这些已有的临床数据的回顾性研究,是分析研究疾病最基本、最重要的研究方法之一,通过将这些海量的临床数据进行统计分析,分析的结果又将反过来为医生临床诊疗全过程提供疾病共享的发病及治疗总体情况信息,帮助医生科学决策,实现精准医疗。
“我们的梦想是不仅仅是利用临床大数据帮助患者,而是希望这些临床大数能渗透到他们的生活和工作,甚至休闲 娱乐 ,通过大数据的分析能够把他们患病的概率降到最低,让人们能一直保持 健康 的状态。” Paynes对医谷展望道。
未来发展构想
在刘雷、Paynes和其团队所做的大量临床数据整合的工作中,由于各自旗下拥有多所强大的教学医院,数据的来源已不是问题,然而,摆在他们面前更为现实的问题有两个,一是要解决多模态临床大数据的选择问题。临床大数据来源多样,是一种多模态数据,其包括有结构化很好的数据,比如化验单、处方;还有一些半结构化的数据,比如住院小结、出院小结;还有完全无结构化的数据,比如医疗影像;还有像基因测序这样的组学数据;以及时间序列数据,比如ICU里会看到患者插着各种各样的仪器测量血压心率脉搏等各种流数据。
怎样从这些不同模态的数据里面选出需要的数据,刘雷表示他们,他们需要的更多的是结构化很好的临床数据,为了得到这部分数据,会通过一定的技术平台会对数据进行一定的清洗,从中选取高质量的有效数据。
这个问题解决后,还有一个临床大数据一直以来绕不开的一个争议--安全和隐私问题。
对此,刘雷表示,依托现有的技术,目前收集的临床大数据基本都能做到“不出院”,这在一定程度程度上很好地保证了数据的安全性。Paynes也指出,美国对于医疗大数据有很严密的保护法规,患者的关键隐私数据,如姓名、住址、电话、身份证号等进入数据管理的时候必须要打马赛克,同时对数据进行强加密,数据即使被泄露也是不可解密的,对所有的数据访问(谁什么时间能访问什么)都要有一套严格的访问控制,通过这样的方式来保证数据安全性。
当技术的问题已不再是问题, 这意味着临床大数据和AI的结合会变得更为完美,因此,刘雷和Paynes更多希望监管层能在未来对基于大数据训练的AI能进行更多关于有效性和安全性方面的评估,也就是审批准入要做到严,同时,还要加强公众对医疗AI的认知,不管AI发展到多么先进的程度,总归存在一定的局限性,它永远不可能替代医生,只能是医生的一种辅助诊断工具。
尽管还有一段路要走,但对于临床大数据和AI的搭配,刘雷和Paynes都充满信心,至少在他们现有开展工作的规划里,“应用临床信息学和数据分析研修班”能最终逐步发展为一个硕士人才培养项目,为临床大数据和人工智能培养更多专业人才。同时,基于两个研究机构现阶段开展的工作,有天能实现跨国界的汇聚统一,可以把所有的临床大数据统一在同一个模型上,建立一个类似于联盟数据一样的联合体,这对于数据的整合和应用就会变得游刃有余。
【凡本网注明来源非大 健康 Pai的作品,均转载自其它媒体,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。】
⑺ 大数据能给医疗带来哪些改变
如今,互联网和信息技术已经普遍覆盖大型公立医院。
这么多医疗大数据的领域可以帮助我们做什么?
●大数据的应用增强了预测流行病
●为医院、医疗系统和医疗办公提高效益
●减少资源浪费
●数据能提高人们对医疗的全面认识
●海量数据可以帮助研究者准确真实反应临床真实数据
●私人订制个性化医疗,大数据收集个人病史家族病史的整理和预测,对于治疗方案进行个性化针对治疗。
最终我们能用大数据得到什么?帮助国家的公共卫生系统更多地参与到大数据应用中,来提高社会的整体健康水平。这才是我们所追求的全民医疗的最高意义。
⑻ 大数据时代带来时代大变革
大数据时代带来时代大变革_数据分析师考试
“贵州贵阳确实非常适合发展大数据,人工智能是可以开辟的大数据的非常好的天地”;
“在大数据时代,每一种数据都是一种财富,如何挖掘视频数据信息这座富饶的金矿是值得思考的问题”;
“21世纪通过大数据的分析去解决医学临床问题已经成为时代潮流和主导”;
……
7月28日,欧美同学会·中国留学人员联谊会第四届年会暨海归创新创业贵阳峰会分论坛之一,贵州大数据产业发展论坛在贵阳国际生态会议中心举行,国内外专家学者、“千人计划”专家、海归博士等创新创业人才汇聚一堂,围绕“大数据与人工智能”、“数据安全”、“大数据+农业”等问题分享经验、交流观点。
中国电信北京研究院总工程师毕奇:
人工智能是可以开辟的大数据的非常好的天地
“大数据时代的到来,带来了很多变革。”国家“千人计划”特聘专家、中国电信北京研究院总工程师、美国贝尔实验室院士、美国电气与电子工程师学会院士(IEEE Fellow)毕奇认为,大数据要有开阔观察数据的思维和完善处理数据的手段,找到经济价值的应用,得到挖掘数据的价值。
怎样得到大数据产生的价值呢?毕奇认为,利用大数据的技术从应用中获取,而服务是获得经济收入的最直接的来源。
“现代服务行业呈计算机化,互联网是现代服务业计算机化的一场革命,而用户界面是这场革命的制高点。”毕奇说,互联网商通过控制用户界面,将大数据服务推向纵深,获得了更大的经济价值。
他分析说,信息行业的服务趋势是从第一代以新浪为代表的门户网站,首页有大量信息供用户自己选择,第二代是谷歌、网络为代表,大数据在后台,通过关键字搜索获取大量信息,第三代是用智能方法获取信息服务。
“目前正处在第二代向第三代发展的阶段,是投资进入开辟新方向的最好时机,而人工智能是可以开辟的大数据的非常好的天地。”毕奇说,从海量数据中挖掘价值才是大数据应用成功的关键,但海量无结构的数据的挖掘对获取数据的价值造成巨大的压力,人工智能便是建立数据结构、发掘数据价值的捷径之一。
人工智能需要庞大的数据库来训练数据模型,隐藏的数据结构可以由人工智能来寻找和建立,人工智能与人才是大数据成功的关键因素,他还举了“智慧教育”和“机器人服务”两个大数据与人工智能的应用案例。
“目前的人工智能技术不仅能理解语义,根据上下文理解多义单词和多句,实时产生答案,有逻辑推理功能,还有机器自我学习功能,能学习和发现数据的内在结构。”他认为,大数据应用是未来服务的关键技术,人工智能系统是大数据应用的人机界面,能有效地推动大数据的发展,大数据与人工智能的结合可以在很多领域有着较好的商业前景。
第一次来贵州贵阳的毕奇,山清水秀给他留下深刻印象。“这里确实非常适合发展大数据,贵州、贵阳政府抓住发展大数据的时代机遇,为时代的变革迈出了稳健的步伐。”毕奇说,大数据有着广阔的领域,在各行各业都有着发展空间,“大数据有着大价值,能提供大机遇,可能导致大变革,有潜力带来大效益。”
上海弘视智能有限公司创始人、董事长潘今一:
挖掘大数据时代下的视频数据“金矿”
“目前,全球共有数十亿个监控摄像机,记录着城市的第一次心跳和呼吸,这些海量的视频数据中蕴含着大量的政治、商业和生活信息,如何在大数时代的背景下,挖掘视频数据信息这座富饶的金矿是值得思考的问题。”上海弘视智能有限公司创始人、董事长,中组部“千人计划”国家特聘专家潘今一博士提出了自己的想法。
潘今一介绍,大数据视频监控天网不仅具有高清视频监控系统的完整功能,包括高清监控、大屏显示、录像回放和查询等,还包括图像识别和抓拍功能,即对经过的目标自动识别、抓拍(人、车、特征),识别后统一集中到公安内部的云计算中心。
基于大数据视频监控天网,潘今一创办的弘视智能有限公司开发的“基于相似度干预迭代视频数据搜索”系统(RIIS)更加强调对人、车、物体特征的对比,从而找到身份信息,以及通过关联搜索,对同一目标的行动轨迹、出现概率、团伙关联、团伙延伸等进行分析,从而实现对重点人群的报警联动。
目前,该系统已经在遵义、毕节和都匀获得良好的实际效果,针对目前贵阳市如火如荼开展的“两严一降”、禁毒人民战争和大数据产业,潘今一希望在这里也找到合作的空间。
值得期待的是,今天五月份,公司已经与贵大合作,着力打造大数据视频监控天网“样板”,除了原系统中的所有功能,还将实现视频识别精准性的“升级”,进而提高系统的应用价值,希望有机会可以为贵阳打造“平安城市”贡献力量。
“但是,大数据天网监控可不只是有维稳和治安等政治功能,其商业价值才是以后重要的发展方向。”潘今一强调说,在保护市民个人隐私的前提下,视频数据中所传递的商业信息极富商业价值。
他举例说,视频信息中收集到的服装款式、色彩,以及顾客光顾商店的类别、消费习惯、活动轨迹等都是商家需要的重要信息,这对于制定合理的市场营销策略至关重要。
潘今一表示,在大数据时代,每一种数据都是一种财富。而视频数据这座“金矿”的富饶程度也远超公众的想象,他非常期待看到这座“金矿”能够给产业发展带来的源源动力。
韩国釜山大学超级计算机中心主任金哲民:
通过大数据解决医学临床问题成为时代潮流和主导
“在韩国保健福祉部看来,韩国现在最大的焦点问题就是人口老龄化,韩国从2000进入老龄化社会,2018年进入高龄社会,预计2026年进入超高龄社会,韩国高龄化速度在全球是最快的。”韩国釜山大学超级计算机中心主任、韩国抗衰老事业团团长、釜山大学医科大学研究院副院长金哲民说,面对老龄化的问题,医疗保健系统也必须与时俱进、有所变化。
金哲民认为,现在医疗中心的保健医疗是以治疗、预防和老人病的管理以及康复为主体来设置,为了更精度的医疗管理,现有的医疗形态就需要重新树立,因此用国民健康信息大数据分析技术来进行精度分析便成为重要课题。
最近,金哲民的团队开发了保健医疗大数据开放系统,开放了健康保险审查评价院从2009年到2013年所持有的公共数据、内存数据、公开的API等所有公共数据,能在国民和保健医疗产业部门和医疗研究机构等用互联网进行疾病、药品等医疗大数据分析。
“还有一个国民健康保险团体公团,从2014年开始分析提供保健医疗大数据。”金哲民说,保健医疗大数据的精髓是基因组信息和临床信息链接配对医疗,目前正在做以未来配对医学遗存体的信息为基础的大数据分析的基础设施建设。
10年前韩国保健福祉部就开始对基因组进行研究,研究数据已从2014年5月开始对全世界的相关研究者进行公开使用。国立保健研究院在2014年3月设立了国立医科学知识中心集中管理和运营所有的知识信息,主要把临床研究信息和遗传体的临床研究信息收集、加工变成有意义的医学信息进行临床使用。
“韩国人口问题已成为事关国家存亡的重要问题,医学模式已渐渐向治疗预防转变,因此大数据的管理和使用越来越重要。”金哲民说,21世纪疾病治疗要秉持“以预防为主”的主导思想,通过大数据的分析去解决医学临床问题已经成为时代潮流和主导。
贵州大学博士李晖:
FAST大数据服务 让“高大上”科学“接足地气”
“前不久,被誉为地球‘大表哥’的开普勒-452b行星被天文学家通过开普勒太空望远镜发现,这使得一直显得有些冷门的天文学再次走进大众视野。”贵州大学博士李晖的这番话引起观众的注意。
李晖介绍,其实天文学并不冷门,它不仅跟我们的日常生活密切相关,而且和贵阳现在大力发展的大数据产业也有着千丝万缕的联系。
目前,贵州省大数据产业发展应用研究院、贵州省先进计算与医疗信息服务工程实验室和贵州大学计算机科学与技术学院正在合作研究FAST大数据服务项目,是天文学应用于大数据的示范。
李晖介绍,FAST大数据服务的意义在于海量天文数据整合分析、天体分析和挖掘以及天方大数据的可视化,即提供数据的多维可视化分析,把海量天文数据转化为形象可视的易懂演示图像资料,让公众也能直接享受深奥科学的结果。
银河系中存在10亿个类地球行星,宇宙中类地球行星的数量是地球上沙子数量的100倍,而开普勒望远镜观测到的数据中,仅计算出约15000颗行星,初步鉴别4000余颗,相比于浩瀚宇宙,目前人类的技术能力还属有限。此时,FAST天文大数据服务则应运而生,推动天文科学研究和探索由假设驱动向数据驱动转变。科学研究由过去的“应该设计什么样的实验来验证这个假设?”转变为现在的“从这些数据中能分析出来什么?如果把其他数据融合,能够发现什么?”数据密集型科学研究对数据管理与分析技术提出了巨大的挑战。
眼下,李晖团队已经初步建立云计算基础平台、数据服务平台,未来第三方应用服务、可视化分析服务、数据分析云服务和科普应用服务等将成为研究的主攻方向。
届时,利用FAST大数据服务,繁杂的数据将会变成一项项可视图像,甚至可以交互查看细节、自动化天体识别并勾勒天体轮廓,“高大上”的科学将走下高台“接足地气”。
江苏加德绿色能源有限公司总经理周楚新:
让农民得到“大数据深度学习”的红利
“如果整个农业不联网的话,物联网就是一句空话,而如果物联网不成的话,互联网就是一句空话。”江苏加德绿色能源有限公司总经理、南京绿色科技研究院院长、加德绿色能源研发有限公司总裁、国家“千人计划”特聘专家周楚新说。
他认为,作为人类赖以生存的根本,农业发展离不开信息化,大数据技术从各种各样类型的数据中,快速获得有价值信息的能力,为现代农业信息化建设提供了强劲的动力。
“如何让农民得到‘大数据深度学习’的红利是我们需要重点研究的问题。”周楚新说,“大数据深度学习”意味着更快速地从数据中获得更多、也更精准的信息,但农民不喜欢空洞的概念,如何用最简单最直接的信息,让教育水平偏低的农民也能明白是我们最重要的课题。
过去,传统的农业生产中的许多决策往往是靠农民自身的经验,有的甚至是凭感觉,而用农业大数据来指导,将为农业的生产发展和政府决策提供科学、准确的依据。全国每一位农民都可以提供来自第一线的信息,同时信息的共享,使得农民在田间地头就能够获知到各种农业动态信息,并通过农业大数据平台得到精确的生产指导。
周楚新表示,农业现代化是实现我国四化同步发展的重要组成部分,互联网+农业、大数据+农业是一个万亿级大市场。包括联想、阿里等国内互联网及电子商务巨头已经纷纷开始抢占市场,同时传统农业生产资料企业也在抓紧布局农业农村信息化市场及农业农村电子商务市场。
周楚新认为,农业信息化是一种新型生产力,是我们发展的必然选择、核心要素和制高点,支撑和引领农业现代化发展、转型和升级的方向。以农业信息化促进乃至带动农业现代化,对促进国民经济和社会持续协调发展具有重要意义。
中国智慧城市发展研究中心副秘书长唐斯斯:
信息化为后发地区提供“弯道超车”的可能
“现在我国百分之百的省级城市,百分之九十的地级城市,超过百分之六十以上的县级城市都提出要建设或者正要建设智慧城市,可以看出,智慧城市已经成为我国城市发展的主流。”中国智慧城市发展研究中心副秘书长唐斯斯说。
“建设智慧城市离不开我们正面临的城镇化进程的背景,大量的劳动力从农村向城市转移,各个城市都面临着大量的问题,公共服务跟不上、社会治理难及产业转型难等。”唐斯斯认为,这些都倒逼我们进行体制改革和创新,而信息化则有着巨大的潜力并发挥了关键的作用。从信息化的发展趋势来看,新一代的信息技术已经跟我们的经济社会深度融合,融合才能创新,原有传统发展模式的颠覆也为很多后发的地区提供了一个“弯道超车”的可能。
唐斯斯表示,目前我们正面临着经济新常态的局面,经济发展由原来的高速发展转为中高速发展,经济结构发生质的变化,经济增长动力从原来的要素驱动、投资驱动向创新驱动转变。在这个过程中间,国家非常重视信息化的手段,希望在经济新常态下用这样一个新的方式来解决传统方式难以解决的问题。
唐斯斯认为,网络安全是我们在建设智慧城市过程中不得不面对的问题,信息安全已经纳入到我们国家安全的层面,然而原有的信息保障已不足以应对我们所面临的问题。所有的云计算是集约化的建设,如果一旦信息安全保障没有到位,意味着我们将面临更大的风险,这是我们需要特别注意的。
“移动互联网已经进入了一个全面爆发的时代,民众需求的变化,对政府提出了更高的要求,对我们原有的服务模式也提出了更高的要求。”唐斯斯说,为此,国家在信息化的战略方面密集地颁布了一系列的政策,希望信息化成为促进我国经济社会发展的强大动力和支撑。同时,信息惠民政策的密集出台,意味着信息化从为政府服务,向更多的为民众服务转变。
以上是小编为大家分享的关于大数据时代带来时代大变革的相关内容,更多信息可以关注环球青藤分享更多干货
⑼ 大数据引领经济浪潮 成为国家战略
大数据引领经济浪潮 成为国家战略
在信息社会,随着社交网站、微博、微信等互联网应用不断加快,海量数据正在行政管理、生产经营、商务活动等众多领域不断产生、积累、变化和发展,大数据由此也从概念走向实践。数据资源正和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
大数据引领新经济革命浪潮大数据即将带来一场颠覆性的革命,它将推动社会生产取得全面进步,助推医疗、零售业、制造业、金融、能源等各行各业产生根本性变革。大数据在临床诊断、研发、付款和定价、新运营模式等方面发挥了显著效果;零售行业中,在市场分析、销售规划、运营以及供应链等方面利用大数据进行分析优化;制造业中,大数据可以有助于了解客户的需求,全面提升产品设计、研发和销售等;金融行业(行情 股吧 买卖点)中,大数据发挥处理海量数据时快速、准确的优势,在较短的时间内构建准确的、实时的、贴切市场需求的模型;能源行业(行情 股吧 买卖点)中,随着传感器的广泛引入,大数据对传感器创造的海量数据进行快速、及时地分析。中国发展大数据的现实意义1.大数据有助于破解中国社会转型中的难题。中国经济已进入转型期,社会进入矛盾凸显期,改革进入攻坚期,增长进入换档期。宏观经济形势错综复杂、各种社会改革盘根错节、群体性事件频发等突出问题,仅仅依靠现有的管理手段与方法已明显落后。大数据能高效处理瞬息万变的海量信息,能有效破解转型中的社会难题。比如,2008年马云利用淘宝网的海量数据早半年成功地预测到了金融危机,大数据可以提高宏观经济预测的准确性。大数据同样能及时处理和分析海量交通信息,及时转化成出行指南,缓解交通拥堵。大数据更能及时处理瞬息万变的空气质量变化情况,准确判断污染源。例如位于亚特兰大的通用电气(GE)能源监测和诊断中心,每周7x24小时实时收集全球50多个国家约1550台燃气轮机的数据。2.大数据催生新产业,带来经济增长新空间。随着大数据在商业企业、政府公共事业、国防军事等领域应用,大数据日益形成一个新产业。大数据是一个事关国家社会发展全局的产业。《“十二五”国家战略性新兴产业发展规划》提出支持海量数据存储、处理技术的研发与产业化。围绕产业链上下游,大数据必将带动智能终端的普及应用、物联网、云计算等产业的蓬勃发展,高性能服务器产业的发展和信息技术服务业等产业的发展。3.大数据能有效减少社会运行成本,提高经济与社会运行效率。医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量。麦肯锡报告估计美国医疗行业每年通过数据获得的潜在价值超过3000亿美元,能够使得美国医疗卫生支出降低超过8%。公共管理领域,能够利用大数据有效推动税收工作开展,提高教育部门和就业部门的服务效率;零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率,充分利用大数据的零售商有可能将其经营利润提高60%以上。4.大数据带来精准营销,改变传统商业模式。大数据能有效改善企业的数据资源利用能力,提高从数据到信息的转化率,让企业的决策更为准确,从而提高整体运营效率。网络通过大数据实现精准营销。阿里巴巴通过对淘宝网客户交易记录进行分析,能够以极低的成本准确评定每个商户的信用等级,阿里巴巴2010年开展的淘宝网中小企业无抵押贷款,至今累计坏账率也仅有1.94%,而且盈利可观。5.大数据推动政府开放,提高公共决策的预见性和响应性。为了响应大数据战略,政府开展逐步公开已有数据,如美国推出了政府数据在线网站(data.gov),英国推出了政府数据公开网站(data.gov.uk),数据开放推动政府不断开放。发达国家已上升为国家战略全球发达国家已经充分认识到大数据时代的发展趋势,纷纷将大数据上升为国家战略。哪些个人信息是可以获取的,怎样使用,以及个人是否允许这种使用,这都需要立法界定五项建议我们已经进入大数据时代,面对大数据革命浪潮,中国应着力做好以下几方面的工作:1.将发展大数据上升为国家战略。政府应顺应信息技术发展趋势,抓住大数据带来的生产效率提升和经济社会运行成本降低的战略机遇,研究大数据发展趋势,评估大数据对中国政府、经济与社会运行所带来革命性影响,制定未来五年或更长时间发展主要目标、重点任务、行动计划和保障措施,将大数据战略上升为国家战略,通过体制机制创新,盘活政府及社会的数据资源,将数据资源转化为生产力。2.加快政务数据资源开放。随着中国电子政务的深入发展,信息系统基本覆盖了中国政府的核心业务。政务在日常行政审批和为民提供公共服务时产生了大量业务数据。包括个人的户籍、卫生医疗保障、教育、就业等方面的数据,企业的工商、税务和基本法人信息,自然资源的气象、地震、土地、矿产资源、环境资源、海洋等部门的信息,还包括知识产权、进出口、出入境等相关政务数据。在这些数据中,有很多属于非敏感信息,政务应根据中国信息公开法,主动开放政府掌握的非敏感信息,提高信息资源的社会开放度,积极迎接大数据革命浪潮。3.营造大数据产业发展的市场环境。大数据是一个前景十分广阔的新兴产业,但当前仍然存在很多制约产业发展的因素。加快制定大数据标准和指南,鼓励重要领域关键技术研发。政府应充分发挥市场机制的作用,鼓励企业创新,保护知识产权,防止出现数据资源垄断,营造大数据产业发展的市场环境。出台鼓励大数据产业发展的财税政策,重点支持大数据的核心技术和推广应用。政府部门在气象、统计、医疗卫生等领域实施大数据重大应用示范工程,积极探索大数据在政府部门中的应用,在全社会形成推广示范效应。4.加快数据安全立法。大数据时代的安全与传统安全相比更为复杂。一方面大量的数据汇总,涉及到企业运营数据、客户信息、个人的隐私和各种行为的详细记录,对数据的合法抓取和使用需要法律保障。另一方面,中国关于信息产权不清晰,缺乏对信息的所有权、使用权和收益权的规定,这就导致了无法形成一个健全的信息资源市场,无法真正发挥市场在信息资源方面的优化配置作用,这就需要通过法律手段,对信息资源产权进行界定,以便公众理解哪些个人信息是可以获取的,怎样使用,以及个人是否允许这种使用。
5.加快大数据专业人才引进与培养。掣肘全球大数据产业发展的瓶颈之一就是人才短缺。政府可以采取培养和引进人才相结合策略。一方面加快高水平大数据人才的引进,另一方面重点培育数据挖掘、机器学习等方面的专业人才。政府应该出台激励措施并对企业管理者进行数据分析技术培训,提高大型企业管理人员的数据分析能力
⑽ 大数据国家战略推动“数据驱动经济”
大数据国家战略推动“数据驱动经济”
五中全会首次明确大数据上升为国家战略。大数据时代的到来,让“数据驱动”成为新的全球大趋势。国家竞争战略正从对资本、土地、人口、资源/能源的争夺转向对大数据的争夺。
日前闭幕的五中全会首次明确大数据上升为国家战略。
大数据时代的到来,让“数据驱动”成为新的全球大趋势。国家竞争战略正从对资本、土地、人口、资源/能源的争夺转向对大数据的争夺。大数据颠覆性地改变经济形态、国际安全态势、国家治理和资源配置模式,引发了巨大的经济社会变革,而数据开放与共享成为推动各国大数据发展的使能器。
近些年来,全球各国纷纷将开放数据纳入到国家发展战略。截至2014年4月,全球已有63个国家制定了开放政府数据计划,数据开放推动政府从“权威治理”向“数据治理”转变。美国政府最先对大数据革命做出战略反应。2009年,美国联邦政府发布《开放政府指令》,作为大数据的前奏推出了“Data.gov”公共数据开放网站。2012年3月,美国联邦政府发布了《大数据研究和发展计划》,正式启动了“大数据发展计划”,宣布将投入超过2亿美元在大数据研究上。
欧盟同样是数据开放的积极行动者。2011年11月,欧盟数字议程采纳欧盟通信委员会《开放数据:创新、增长和透明治理的引擎》的报告,开始推进开放数据战略,该战略从三方面对原有法律、政策进行修订与补充:第一,建立适应信息再利用的法律框架;第二,动用金融工具,以支持开放数据和行动作为建立欧洲经济数据门户的部署;第三,促进各成员国之间的协调与经验交流,为开放数据与共享提供平台。
此后,欧盟专门在2014年发布了《数据驱动经济战略》,有望近期内成为欧盟经济单列行业,为欧盟恢复经济增长和扩大就业,做出巨大贡献。欧盟在大数据方面的活动主要涉及两方面内容:一是研究数据价值链战略计划;二是资助“大数据”和“开放数据”领域的研究和创新活动。数据价值链战略计划包括开放数据、云计算、高性能计算和科学知识开放获取四大战略,主要原则是:高质量数据的广泛获得性,包括公共资讯数据的免费获得;作为数字化单一市场一部分,欧盟内数据的自由流动;寻求个人潜在隐私问题与其数据再利用潜力之间的适当平衡,同时赋予公民以其希望形式使用自己数据的权利。
大数据对于中国的战略意义母庸置疑。中国是全球互联网用户、移动互联网用户最多的国家,拥有庞大的数据生产和数据消费的主体。我国已经具备建设数据大国的潜在优势。
然而,与国外先进国家相比,数据共享与开放严重滞后。我国政府掌握着80%以上的数据,是大数据时代的财富拥有者,政府作为政务信息的采集者、管理者和占有者,具有其他社会组织不可比拟的信息优势。但由于信息技术、条块分割的体制等限制,各级政府几个部门之间的信息网络往往自成体系,相互割裂,相互之间的数据难以实现互通共享,导致目前政府掌握的数据大都处于割裂和休眠状态。行政分割导致数据无法共享。我国政府数据资源多按地域或部门进行分割管理。不同地域和部门为了自身利益,形成人为数据共享壁垒,加大了政府大数据开发难度。由于政府部门业务管理信息系统开发和建设的“部门化”,政府信息系统出现“系统林立”和分裂状态,政府公共信息资源重复采集现象严重,信息摩擦和治理成本偏高。
总体而言,我国政府开放数据的程度远远落后于世界领先国家。从国际上公认衡量各国信息化发展水平的全球电子政务发展指数(EGDI)上看,近十年,我国EGDI排名先升后降,从2003年第74位升至2005年第57位,2012年又跌至第78位,已经严重阻碍大数据在国家治理中的统筹与应用。因此,近期出台的《促进大数据发展行动纲要》提出要把数据开放共享作为战略部署的重要任务切中要害,顺应未来发展大势。
随着数据治理理念的影响渗透,我国公共数据开放共享进程开始逐步加快。2013年,国务院发布了《关于促进信息消费扩大内需的若干意见》,要求促进公共信息资源共享和开发利用,推动市政公用企事业单位、公共服务事业单位等机构开放信息资源。此外,2011-2013年陆续上线了国家数据(NationalData.gov.cn)、北京市政务数据资源网(BjData.gov.cn)和上海政府数据资源网(DataShanghai.gov.cn)。然而,总体而言与发达国家还有非常大的差距,据“开放知识基金会”发布的《2013年开放政府数据普查》结果,在被普查的全球70个国家和地区政府中,我国综合排名第35位,与我国经济大国和数据大国的身份极不匹配。
数据开放与共享涉及到诸如数据跨境流动和数据主权,数据开放隐私保护、数据安全保障及其政策框架体系等问题,这些重大问题的有效处理和把握将是影响中国未来推动数据开放、实施数据治国战略的关键所在。
以上是小编为大家分享的关于大数据国家战略推动“数据驱动经济”的相关内容,更多信息可以关注环球青藤分享更多干货