❶ 大数据、云计算、人工智能之间有什么样的关系
云计算最初的目标是对资源的管理,管理的主要是计算资源,网络资源,存储资源三个方面。想象你有一大堆的服务器,交换机,存储设备,放在你的机房里面,你最想做的事情就是把这些东西统一的管理起来,最好能达到当别人向你请求分配资源的时候(例如1核1G内存,10G硬盘,1M带宽的机器),能够达到想什么时候要就能什么时候要,想要多少就有多少的状态。
这就是所谓的弹性,俗话说就是灵活性。灵活性分两个方面,想什么时候要就什么时候要,这叫做时间灵活性,想要多少就要多少,这叫做空间灵活性。
这个神经元有输入,有输出,输入和输出之间通过一个公式来表示,输入根据重要程度不同(权重),影响着输出。
于是将n个神经元通过像一张神经网络一样连接在一起,n这个数字可以很大很大,所有的神经元可以分成很多列,每一列很多个排列起来,每个神经元的对于输入的权重可以都不相同,从而每个神经元的公式也不相同。当人们从这张网络中输入一个东西的时候,希望输出一个对人类来讲正确的结果。例如上面的例子,输入一个写着2的图片,输出的列表里面第二个数字最大,其实从机器来讲,它既不知道输入的这个图片写的是2,也不知道输出的这一系列数字的意义,没关系,人知道意义就可以了。正如对于神经元来说,他们既不知道视网膜看到的是美女,也不知道瞳孔放大是为了看的清楚,反正看到美女,瞳孔放大了,就可以了。
对于任何一张神经网络,谁也不敢保证输入是2,输出一定是第二个数字最大,要保证这个结果,需要训练和学习。毕竟看到美女而瞳孔放大也是人类很多年进化的结果。学习的过程就是,输入大量的图片,如果结果不是想要的结果,则进行调整。如何调整呢,就是每个神经元的每个权重都向目标进行微调,由于神经元和权重实在是太多了,所以整张网络产生的结果很难表现出非此即彼的结果,而是向着结果微微的进步,最终能够达到目标结果。当然这些调整的策略还是非常有技巧的,需要算法的高手来仔细的调整。正如人类见到美女,瞳孔一开始没有放大到能看清楚,于是美女跟别人跑了,下次学习的结果是瞳孔放大一点点,而不是放大鼻孔。
听起来也没有那么有道理,但是的确能做到,就是这么任性。
神经网络的普遍性定理是这样说的,假设某个人给你某种复杂奇特的函数,f(x):
不管这个函数是什么样的,总会确保有个神经网络能够对任何可能的输入x,其值f(x)(或者某个能够准确的近似)是神经网络的输出。
如果在函数代表着规律,也意味着这个规律无论多么奇妙,多么不能理解,都是能通过大量的神经元,通过大量权重的调整,表示出来的。
这让我想到了经济学,于是比较容易理解了。
我们把每个神经元当成社会中从事经济活动的个体。于是神经网络相当于整个经济社会,每个神经元对于社会的输入,都有权重的调整,做出相应的输出,比如工资涨了,菜价也涨了,股票跌了,我应该怎么办,怎么花自己的钱。这里面没有规律么?肯定有,但是具体什么规律呢?却很难说清楚。
基于专家系统的经济属于计划经济,整个经济规律的表示不希望通过每个经济个体的独立决策表现出来,而是希望通过专家的高屋建瓴和远见卓识总结出来。专家永远不可能知道哪个城市的哪个街道缺少一个卖甜豆腐脑的。于是专家说应该产多少钢铁,产多少馒头,往往距离人民生活的真正需求有较大的差距,就算整个计划书写个几百页,也无法表达隐藏在人民生活中的小规律。
基于统计的宏观调控就靠谱的多了,每年统计局都会统计整个社会的就业率,通胀率,GDP等等指标,这些指标往往代表着很多的内在规律,虽然不能够精确表达,但是相对靠谱。然而基于统计的规律总结表达相对比较粗糙,比如经济学家看到这些统计数据可以总结出长期来看房价是涨还是跌,股票长期来看是涨还是跌,如果经济总体上扬,房价和股票应该都是涨的。但是基于统计数据,无法总结出股票,物价的微小波动规律。
基于神经网络的微观经济学才是对整个经济规律最最准确的表达,每个人对于从社会中的输入,进行各自的调整,并且调整同样会作为输入反馈到社会中。想象一下股市行情细微的波动曲线,正是每个独立的个体各自不断交易的结果,没有统一的规律可循。而每个人根据整个社会的输入进行独立决策,当某些因素经过多次训练,也会形成宏观上的统计性的规律,这也就是宏观经济学所能看到的。例如每次货币大量发行,最后房价都会上涨,多次训练后,人们也就都学会了。
然而神经网络包含这么多的节点,每个节点包含非常多的参数,整个参数量实在是太大了,需要的计算量实在太大,但是没有关系啊,我们有大数据平台,可以汇聚多台机器的力量一起来计算,才能在有限的时间内得到想要的结果。
于是工智能程序作为SaaS平台进入了云计算。
网易将人工智能这个强大的技术,应用于反垃圾工作中,从网易1997年推出邮箱产品开始,我们的反垃圾技术就在不停的进化升级,并且成功应用到各个亿量级用户的产品线中,包括影音娱乐,游戏,社交,电商等产品线。比如网易新闻、博客相册、云音乐、云阅读、有道、BOBO、考拉、游戏等产品。总的来说,反垃圾技术在网易已经积累了19年的实践经验,一直在背后默默的为网易产品保驾护航。现在作为云平台的SaaS服务开放出来。
回顾网易反垃圾技术发展历程,大致上我们可以把他分为三个关键阶段,也基本对应着人工智能发展的三个时期:
第一阶段主要是依赖关键词,黑白名单和各种过滤器技术,来做一些内容的侦测和拦截,这也是最基础的阶段,受限于当时计算能力瓶颈以及算法理论的发展,第一阶段的技术也能勉强满足使用。
第二个阶段时,基于计算机行业里有一些更新的算法,比如说贝叶斯过滤(基于概率论的算法),一些肤色的识别,纹理的识别等等,这些比较优秀成熟的论文出来,我们可以基于这些算法做更好的特征匹配和技术改造,达到更优的反垃圾效果。
最后,随着人工智能算法的进步和计算机运算能力的突飞猛进,反垃圾技术进化到第三个阶段:大数据和人工智能的阶段。我们会用海量大数据做用户的行为分析,对用户做画像,评估用户是一个垃圾用户还是一个正常用户,增加用户体验更好的人机识别手段,以及对语义文本进行理解。还有基于人工智能的图像识别技术,更准确识别是否是色情图片,广告图片以及一些违禁品图片等等。
❷ 大数据工程师是做什么的
大数据工程师主要是,分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务:
找出过去事件的特征:大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。
预测未来可能发生的事情:通过引入关键因素,大数据工程师可以预测未来的消费趋势。
找出最优化的结果:根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
(2)大数据集群虚拟化扩展阅读
大数据工程师需要学习的知识
1、linux
大数据集群主要建立在linux操作系统上,Linux是一套免费使用和自由传播的类Unix操作系统。而这部分的内容是大家在学习大数据中必须要学习的,只有学好Linux才能在工作中更加的得心应手。
2、Hadoop
我觉的大家听过大数据就一定会听过hadoop。Hadoop是一个能够对大量数据进行离线分布式处理的软件框架,运算时利用maprece对数据进行处理。
❸ 数据虚拟化的什么是数据虚拟化
为了实现大数据所勾画出的美好愿景,你需要在数据层和基础设施层等基础架构中对数据进行抽象化的工作。
迄今为止,还没有人能够对这些将云与大数据世界拼接在一起的层、界面和抽象化展开进一步概述,而这也是一项摆在我们面前的艰巨任务。
❹ 大数据的本质是什么
大数据的本质就是利抄用计算机集群来处理大批量的数据,大数据的技术关注点在于如何将数据分发给不同的计算机进行存储和处理。云计算的技术关注点在于如何在一套软硬件环境中,为不同的用户提供服务,使得不同的用户彼此不可见,并进行资源隔离,保障每个用户的服务质量。在大数据和云计算的关系上,两者都关注对资源的调度。
❺ 与云计算、云存储相关的IT技术都有哪些
云计算(Cloud Computing)是
分布式计算(Distributed Computing)、
并行计算(Parallel Computing)、
效用计算(Utility Computing)、
网络存储(Network Storage Technologies)、
虚拟化(Virtualization)、
负载均衡(Load Balance)、
热备份冗余(High Available)等传统计算机和网络技术发展融合的产物。
主要体现在虚拟化及其标准化和自动化。
云存储是在云计算概念上延伸和发展出来的一个新的概念,是一种新兴的网络存储技术,是指通过集群应用、网络技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。云计算系统中广泛使用的数据存储系统是Google的GFS和Hadoop团队开发的GFS的开源实现HDFS。
从软件看,VMware、微软的Hpyer-V、Citrix以及开源的KVM等是主要的虚拟化平台,是云计算的基础。Citrix的优势在桌面虚拟化和应用虚拟化。
至于云计算应用软件开发工具,并没有针对云计算、云存储的独特的编程语言。
许多人会将云计算与大数据联系起来,其实两者既有联系又有区别。云计算就是硬件资源的虚拟化,主要是一虚多,充分利用高性能的硬件资源;而大数据就是海量数据的高效处理,通常需要多合一、或多虚一,跨越多台硬件处理海量数据任务。Amazon是云计算应用领域的先驱,而Google则是大数据应用领域的先驱。大数据既可以采用以虚拟化为基础的云计算架构也可以基于高性能计算(HPC,集群技术、并行技术)来处理。
大数据相当于海量数据的“数据库”,而且通观大数据领域的发展也能看出,当前的大数据处理一直在向着近似于传统数据库体验的方向发展,Hadoop的产生使我们能够用普通机器建立稳定的处理TB级数据的集群,把传统而昂贵的并行计算等概念一下就拉到了我们的面前,但是其不适合数据分析人员使用(因为MapRece开发复杂),所以PigLatin和Hive出现了(分别是Yahoo!和facebook发起的项目,说到这补充一下,在大数据领域Google、facebook、twitter等前沿的互联网公司作出了很积极和强大的贡献),为我们带来了类SQL的操作,到这里操作方式像SQL了,但是处理效率很慢,绝对和传统的数据库的处理效率有天壤之别,所以人们又在想怎样在大数据处理上不只是操作方式类SQL,而处理速度也能“类SQL”,Google为我们带来了Dremel/PowerDrill等技术,Cloudera(Hadoop商业化最强的公司,Hadoop之父cutting就在这里负责技术领导)的Impala也出现了。
因此,云计算、云存储均为计算资源的底层,通过虚拟化的方式提供“设备”级(或操作系统级)的服务,用户可以方便地申请使用”设备“来独立地实现自己的任务(就好像给你一台服务器),而实际上在云上提供给你的是一台虚拟机,至于这台虚拟机运行在哪台硬件设备上,却不一定,甚至可以”无缝“漂移,硬件故障时几乎不影响用户使用。
❻ 怎么为大数据处理构建高性能Hadoop集群
越来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。 关于Hadoop “大数据”是松散的数据集合,海量数据的不断增长迫使企业需要通过一种新的方式去管理。大数据是结构化或非结构化的多种数据类型的大集合。而 Hadoop则是Apache发布的软件架构,用以分析PB级的非结构化数据,并将其转换成其他应用程序可管理处理的形式。Hadoop使得对大数据处理成为可能,并能够帮助企业可从客户数据之中发掘新的商机。如果能够进行实时处理或者接近实时处理,那么其将为许多行业的用户提供强大的优势。 Hadoop是基于谷歌的MapRece和分布式文件系统原理而专门设计的,其可在通用的网络和服务器硬件上进行部署,并使之成为计算集群。 Hadoop模型 Hadoop的工作原理是将一个非常大的数据集切割成一个较小的单元,以能够被查询处理。同一个节点的计算资源用于并行查询处理。当任务处理结束后,其处理结果将被汇总并向用户报告,或者通过业务分析应用程序处理以进行进一步分析或仪表盘显示。 为了最大限度地减少处理时间,在此并行架构中,Hadoop“moves jobs to data”,而非像传统模式那样“moving data to jobs”。这就意味着,一旦数据存储在分布式系统之中,在实时搜索、查询或数据挖掘等操作时,如访问本地数据,在数据处理过程中,各节点之间将只有一个本地查询结果,这样可降低运营开支。 Hadoop的最大特点在于其内置的并行处理和线性扩展能力,提供对大型数据集查询并生成结果。在结构上,Hadoop主要有两个部分: Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。而传统的Linux系统下的较为典型的数据块大小可能是4KB。 MapRece引擎通过JobTracker节点接受来自客户端的分析工作,采用“分而治之”的方式来将一个较大的任务分解成多个较小的任务,然后分配给各个TaskTrack节点,并采用主站/从站的分布方式(具体如下图所示): Hadoop系统有三个主要的功能节点:客户机、主机和从机。客户机将数据文件注入到系统之中,从系统中检索结果,以及通过系统的主机节点提交分析工作等。主机节点有两个基本作用:管理分布式文件系统中各节点以及从机节点的数据存储,以及管理Map/Rece从机节点的任务跟踪分配和任务处理。数据存储和分析处理的实际性能取决于运行数据节点和任务跟踪器的从机节点性能,而这些从机节点则由各自的主机节点负责沟通和控制。从节点通常有多个数据块,并在作业期间被分配处理多个任务。 部署实施Hadoop 各个节点硬件的主要要求是市县计算、内存、网络以及存储等四个资源的平衡。目前常用的并被誉为“最佳”的解决方案是采用相对较低成本的旧有硬件,部署足够多的服务器以应对任何可能的故障,并部署一个完整机架的系统。 Hadoop模式要求服务器与SAN或者NAS进行直接连接存储(DAS)。采用DAS主要有三个原因,在标准化配置的集群中,节点的缩放数以千计,随着存储系统的成本、低延迟性以及存储容量需求不断提高,简单配置和部署个主要的考虑因素。随着极具成本效益的1TB磁盘的普及,可使大型集群的TB级数据存储在DAS之上。这解决了传统方法利用SAN进行部署极其昂贵的困境,如此多的存储将使得Hadoop和数据存储出现一个令人望而却步的起始成本。有相当大一部分用户的Hadoop部署构建都是采用大容量的DAS服务器,其中数据节点大约1-2TB,名称控制节点大约在1-5TB之间,具体如下图所示: 来源:Brad Hedlund, DELL公司 对于大多数的Hadoop部署来说,基础设施的其他影响因素可能还取决于配件,如服务器内置的千兆以太网卡或千兆以太网交换机。上一代的CPU和内存等硬件的选择,可根据符合成本模型的需求,采用匹配数据传输速率要求的千兆以太网接口来构建低成本的解决方案。采用万兆以太网来部署Hadoop也是相当不错的选择。 万兆以太网对Hadoop集群的作用 千兆以太网的性能是制约Hadoop系统整体性能的一个主要因素。使用较大的数据块大小,例如,如果一个节点发生故障(甚至更糟,整个机架宕机),那么整个集群就需要对TB级的数据进行恢复,这就有可能会超过千兆以太网所能提供的网络带宽,进而使得整个集群性能下降。在拥有成千上万个节点的大型集群中,当运行某些需要数据节点之间需要进行中间结果再分配的工作负载时,在系统正常运行过程中,某个千兆以太网设备可能会遭遇网络拥堵。 每一个Hadoop数据节点的目标都必须实现CPU、内存、存储和网络资源的平衡。如果四者之中的任意一个性能相对较差的话,那么系统的潜在处理能力都有可能遭遇瓶颈。添加更多的CPU和内存组建,将影响存储和网络的平衡,如何使Hadoop集群节点在处理数据时更有效率,减少结果,并在Hadoop集群内添加更多的HDFS存储节点。 幸运的是,影响CPU和内存发展的摩尔定律,同样也正影响着存储技术(TB级容量的磁盘)和以太网技术(从千兆向万兆甚至更高)的发展。预先升级系统组件(如多核处理器、每节点5-20TB容量的磁盘,64-128GB内存),万兆以太网卡和交换机等网络组件是重新平衡资源最合理的选择。万兆以太网将在Hadoop集群证明其价值,高水平的网络利用率将带来效益更高的带宽。下图展示了Hadoop集群与万兆以太网的连接: 许多企业级数据中心已经迁移到10GbE网络,以实现服务器整合和服务器虚拟化。随着越来越多企业开始部署Hadoop,他们发现他们完全不必要大批量部署1U的机架服务器,而是部署更少,但性能更高的服务器,以方便扩展每个数据节点所能运行的任务数量。很多企业选择部署2U或4U的服务器(如戴尔 PowerEdge C2100),每个节点大约12-16个核心以及24TB存储容量。在这种环境下的合理选择是充分利用已经部署的10GbE设备和Hadoop集群中的 10GbE网卡。 在日常的IT环境中构建一个简单的Hadoop集群。可以肯定的是,尽管有很多细节需要微调,但其基础是非常简单的。构建一个计算、存储和网络资源平衡的系统,对项目的成功至关重要。对于拥有密集节点的Hadoop集群而言,万兆以太网能够为计算和存储资源扩展提供与之相匹配的能力,且不会导致系统整体性能下降。