㈠ 数据来源与处理
区域地壳稳定性基础数据来源于中国地质科学院地质力学研究所主编的《中国区域地壳稳定性图(1∶500万)》,1997年由地质出版社出版[19]。基于ArcGIS平台,将中国区域地质稳定性图数字化,并对栅格化后的数据统计分析。
断裂活动性基础数据来源于邓启东主编的《中国活动构造图(1∶400万)》,2007年由地震出版社出版[20]。
海拔与地表起伏度基础数据来源于美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量的数字地表高程模型SRTM DEM,数据精度为3弧秒(90×90m),由中国科学院资源环境数据中心提供。基于SRTM DEM数据,利用ArcGIS空间分析模块Spatial Analyst中邻域统计工具Neighbor-hood Statistics,以4×4像元的矩形作为模版算子对整个研究区进行遍历计算,分别提取各区域最高海拔和最低海拔数据,运用栅格计算器calculator,将两者求差,得到一个新栅格图层,其每个栅格的值是以这个栅格为中心的确定领域的地形起伏度值。
植被覆盖度基础数据来源于2009年全球旬NDVI数据集,空间分辨率:0.05°×0.05°,坐标系统:WGS1984,NDVI值域为[-1,+1],由地球系统科学数据共享平台提供。旬NDVI数据均通过国际通用的可以进一步消除云、大气、太阳高度角等部分干扰的最大合成法获得,利用像元二分模型估算植被覆盖度。
岩溶发育程度基础数据来源于中国地质调查局发展研究中心“区域地质调查跟踪与部署研究项目”(121201110)。
地表湿润指数基础数据来源于1961~2013年中国地面降水月值0.5°×0.5°格点数据集(V2.0)数据、1961~2013年中国地面气温月值0.5°×0.5°格点数据集(V2.0)和日照时数数据,由中国气象科学数据共享服务网提供。地表湿润指数计算公式为:
W=P/ET0
式中:W为湿润指数;P为降水量(mm);ET0为潜在蒸散量(mm)。ET0采用Thornthwaite模型计算。
土壤可蚀性基础数据来源于世界土壤数据库(HWSD v1.1),由地球系统科学数据共享平台提供。数据比例尺为1km格网,数据格式为Geotiff,时间为2009年。该数据库由联合国粮农组织(FAO)、国际应用系统分析研究所(IIASA)、荷兰ISRIC-World Soil Information、中国科学院南京土壤研究所(ISSCAS)、欧洲委员会联合研究中心(JRC)于2009年3月共同发布。数据库提供了各个格网点的土壤类型(FAO-74、85、90)、土壤相位、土壤(0~100cm)理化性状(16个指标)等信息。采用在我国广泛使用的EPIC模型,利用土壤有机质和颗粒组成因子(粘粒、粉粒、砂粒)进行估算土壤可蚀性因子K。
土壤侵蚀强度基础数据来源于中国1∶10万土壤侵蚀强度等级图(1997~2000年),由地球系统科学数据共享平台黄土高原科学数据共享平台提供。数据内容覆盖1997~2000年1∶10万各省土壤侵蚀强度等级数据,包括水力侵蚀、风力侵蚀、冻融侵蚀、重力侵蚀、工程侵蚀5个一级类别;微度、轻度、中度、强度、极强度、剧烈6个二级另类别,由第二次全国遥感水土流失普查获得。
社会经济数据采用的是全国千米网格GDP分布数据集和全国千米网格人口分布数据集,由国家科技基础条件平台:地球系统科学数据共享平台(www.geodata.cn)提供。
土地覆被数据采用的是地球系统科学数据共享平台提供的2009年全球1km土地覆被数据集(GlobCover)。GlobCover是欧洲空间局(European Space Agency)建立的全球土地覆被数据集,数据集是根据UNLCCS分类标准,综合采用监督分类和非监督分类两种方法对多时相的MERIS L1B数据进行分类而得到的。GlobCover数据集空间分辨率5°×5°。根据需要,本书将土地覆被类型合并为耕地、林地、草地、水域、未利用地、城乡工矿居民用地等6种土地覆被类型。
本书栅格图层统一重采样为1km×1km的格网,各图层投影参数统一设定为:Projection: Albers;False_Easting: 0.000000;False_Northing: 0.000000;Central_Meridian: 105.000000;Standard_Parallel_1:25.000000;Standard_Parallel_2: 47.000000;Latitude_Of_ Origin: 0.000000;Linear Unit: Meter(1.000000);Geographic Coordinate System: GCS_WGS_1984。
㈡ 数字图像的存储格式
遥感数据以磁带、光盘等为存储介质,由一个或多个文件组成,每个文件又以若干个记录组成。记录是作为一个单位来处理的一组相连的数据,分为物理记录和逻辑记录; 文件是由若干个逻辑记录构成的在目的、形式和内容上彼此相似的信息项的集合。逻辑记录的排列方式决定了文件的结构方式,加之不同的辅助说明信息而构成了不同的遥感数据格式。对于遥感数字图像而言,它必须以一定的格式存储,才能有效地进行分发和利用。
多波段图像具有空间的位置和光谱的信息。多波段图像的数据格式根据在二维空间的像元配置中如何存储各种波段的信息可分为四类。
1. BSQ,BIL,BIP 格式
BSQ ( Band Sequential) 格式,又称为波段序贯格式,在一个遥感数据文件内各像元DN 值相当于以 “波段” 为主要关键字、以 “行” 为次要关键字、以 “列” ( 像元号) 为第三关键字对像元 DN 值进行排序存放。
BIL ( Band Interleaved by Line) 格式,又称为波段行交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “波段”为次要关键字、以 “列”( 像元号) 为第三关键字对像元 DN 值进行排序存放。
BIP ( Band Interleaved by Pixels) 格式,又称为波段像元交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “列” ( 像元号) 为次要关键字、以 “波段”为第三关键字对像元 DN 值进行排序存放。
上述遥感数据基本格式具有不同的特点和适用范围。BSQ 格式最适合于对单个波段的整个或部分图像空间区域进行存储和读取等处理操作,如图像对比度增强、平滑、锐化等; BIP 格式为图像数据单个像元波谱特性的存储与读取提供最佳性能,如在最大似然比分类法、波段之间的加减乘除代数运算等亦宜采用该格式; BIL 方式具有以上两种方式的中间特征,提供了图像空间和像元波谱处理之间的一种折中的方式,适用于以行 ( 图像扫描行) 为单位的处理操作,如水平方向的线性影像特征增强处理等。
2. Fast - L7A 格式
该格式是美国 EDC 在沿用了以往 Landsat 数据产品快速格式的基础上而选用的记录Landsat-7 / ETM + 数据的格式之一。Fast - L7A 格式的数据由 3 个头文件及 8 个数据文件组成,3 个头文件对应 Landsat-7 数据的三个波段组: 全色波段组、可见光及近红外波段组、热红外波段组; 8 个数据文件对应 Landsat-7 数据的 8 个波段。
3 个头文件中,每个头文件包含 3 个 1536 字节的记录,分别是管理记录、辐射记录和几何记录,它们记录了产品标识信息、图像标识信息、辐射校正系数、地图投影、地球模型、太阳高度角和方位角等图像数据辅助信息。8 个数据文件中,每个文件仅含一个波段的数据而不含头尾记录,图像数据按行顺序排列,并以 8 bit 无符号整数表示。
3. GeoTIFF 格式
GeoTIFF 是包含地理信息的一种 TIFF 格式的文件。GeoTIFF 格式的数据由 1 个头文件及相应的数据文件组成。其头文件与 Fast - L7A 头文件相似,8 个数据文件分别对应于Landsat-7 数据的 8 个波段数据。
4. HDF 格式
HDF ( Hierarchical Data Format,层次数据格式) 是由美国伊利诺伊大学 ( the Univer-sity of Illinois) 的国家超级计算应用中心 ( The National Center for Supercomputing Applica-tions,NCSA) 于 1987 年研制开发的一种软件和函数库,它使用 C 语言和 Fortran 语言编写,是一种超文本文件格式,能够存储不同种类的科学数据,包括图像、多维数组、指针及文本数据。HDF 格式还提供命令方式,分析现存 HDF 文件的结构,并即时显示图像内容。科学家可以用这种标准数据格式快速熟悉文件结构,摆脱不同数据格式之间相互转换的繁琐,而将更多的时间和精力用于数据管理和分析。目前,在国外各种卫星传感器上,已经广泛使用了这种标准数据格式,如 Landsat-7,EOS - TERRA,EOS - AQUA 等。
在物理存储结构上,一个 HDF 文件包括一个文件头 ( File Header) ,一个或多个描述块 ( Data Descriptor Block) ,若干个数据对象 ( Data Object) 。文件头位于 HDF 文件的头四个字节,其内容为四个控制字符的 ASCII 码值,四个控制字符为 N,C,S,A,可用于判断一个文件是否为 HDF 文件格式。数据对象是 HDF 文件最基本的存储元素,包括一个描述符和一个对应的数据元素。描述符长度为 12 个字节,主要用来描述这个数据元素的数据类型、位置偏移量、数据元素字节数。在实际的 HDF 文件中,描述符并不是和它对应的数据元素连在一起,而是把相关的许多描述符放在一起而构成一个描述块,在这个块的后面顺序存储了各个描述符所对应的数据元素。数据元素是数据对象中的裸数据部分,也就是数据本身,可以是字符、整数、浮点数、数组等。
1993 年美国航空航天局 ( NASA) 把 HDF 格式作为存储和发布 EOS ( Earth Observa-tion System,对地观测系统) 数据的标准格式,此后又在 HDF 标准的基础上共同开发了一种专门化的 HDF 格式———HDF - EOS,专门用于处理各种 EOS 产品。HDF - EOS 使用标准的 HDF 数据类型定义了点、条带、网格这三种特殊数据类型,并且引入了元数据( Metadata) ,简化了空间数据的访问过程,提高了科学研究和用户对 EOS 数据的访问速度。
遥感技术被应用以来,遥感数据采用过很多格式,以 Landsat-7 卫星的数据产品为例,该数据产品由美国地球观测系统数据中心 ( EDC) 提供,按照产品处理级别可分为 三类,即 Level 0R,Level 1R 和 Level 1G。三种产品的定义如下 :
Level 0R: 未经辐射校正和系统级几何校正的数据产品。
Level 1R: 经过辐射校正但未经系统级几何校正的数据产品。
Level 1G: 经过辐射校正和系统级几何校正的数据产品。
EDC 的各类产品所采用的数据格式共有三种,分别是 HDF,Fast - L7A 和 GeoTIFF,产品类型和数据格式之间的对应关系见表 4-1。
表 4-1 Landsat-7 数据产品类型及数据格式
在遥感数据中,除图像信息以外还附带有各种注记信息。这是提供数据结构在进行数据分发时,对存储方式用注记信息的形式来说明所提供的格式。以往曾使用多种格式,但从 1982 年起逐渐以世界标准格式的形式进行分发。因为这种格式是由 Landsat TechnicalWorking Group 确定的,所以也称 LTWG 格式。世界标准格式具有超结构 ( Super Struc-ture) 的构造,在它的描述符、文件指针、文件说明符的三种记录中记有数据的记录方法。其图像数据部分为 BSQ 方式或 BIL 方式。
㈢ JPG、GeoTIFF数据转换为IMG文件
除了二进制数据需要转换为默认的 IMG 文件,在实际工作中还需要将其他文件类型如 TIF、JPG 等转换成 IMG 数据。具体过程在 Export/Export 对话框中选择 Export,设置输出的文件类型。
(1)GeoTIFF 文件转换为 IMG
GeoTIFF 文件转化为 IMG 的对话框如图 3. 18 所示。
图 3. 17 波段合成结果图像(图像色彩以计算机实际显示为主)
图 3. 18 GeoTIFF 文件格式转换为 IMG
单击 OK,打开 Import TIFF 对话框(图 3. 19),点击 Import Options,打开 ImportOptions对话框(图 3. 20),设置波段和操作范围。
图 3. 19 Import TIFF 对话框
图 3. 20 Import Options 对话框
单击 OK,关闭 Import Options 对话框,单击 OK,执行 GeoTIFF 文件输入。
(2)JPG 数据格式转换为 IMG
JPG 数据格式转换为 IMG 的对话框如图 3. 21 所示。
单击 OK,打开 Import JFIF Files 对话框(图 3. 22),点击 Import Options,打开 ImportOptions 对话框,设置波段和操作范围,如图 3. 20 所示。单击 OK,关闭 Import Options 对话框,单击 OK,执行 JPG 文件输入。