❶ 大数据攻略案例分析及结论
大数据攻略案例分析及结论
我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?
{研究结论}
■大数据营销的本质是一个影响消费者购物前心理路径的问题,而这在大数据时代前很难做到。
■对于传统企业而言,要打通线上与线下营销,实现新的商业模式,如O2O等,离不开大数据。
■虽然大数据应用往往集中于大数据营销,但对于一些企业,大数据的应用早已超越了营销范畴,全面进入了企业供应链、生产、物流、库存、网站和店内运营等各个环节。
■对于大部分企业,由于数据分析人员与业务人员之间的彼此视角与思考方向不同,大数据分析和运营之间存在脱节情况,这是大数据无法用于企业运营最大的阻力
■对于大多数互联网公司来说,大数据量、大用户量是一个相互促进,强者越强的循环过程。
■对于大型互联网平台,大数据已经成为其生态循环中的血液,对于这些企业,最重要
的不是如何利用大数据改进自身运营,而是利用大数据更好地繁荣平台生态。
■对于平台企业,它们的大数据策略正逐渐从大数据运营,向运营大数据转变,前者和
后者的差别在于,前者只是运营改进的动力,而后者则成为企业实现未来战略的核心资源。
我们都已被反复告知:我们将迎来一个“大数据时代”。
大数据应用,将和云计算、3D打印这些技术变革一样,颠覆既有规则,并成为先行企业的制胜关键。
与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?
来自于互联网、移动互联网、物联网传感器、视频采集系统的数据正海量增长,汇成大数据的海洋,相伴的是海量数据存储、分析技术的突破性发展,所有这一切都给企业的应用带来了无限可能性。
中国企业家研究院对当前中国企业大数据应用的状况进行了归纳分类,以帮助企业了解实际应用大数据时的困局难点,并提供领先企业的典型案例以资借鉴。
表1
表2
大数据运营—企业提升效率的助推力
对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量辩笑亏数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。大数据运营应用中,大数据的应用分为三类:用于企业外部营销、用于内部运营,以及用于领导层决策。
一、大数据营销
大数据营销的本质是影响目标消费者购物前的心理路径,它主要应用在三个方面:1、大数据渠道优化,2、精准营销信息推送,3、线上与线下营销的连接。在消费者购物前,通过各种方式,直接介入其信息收集和决策过程。而这种介入,是建立在对于线上与线下海量用户数据分析的基础之上。相比传统狂轰滥炸或等客上门的营销,大数据营销无论在主动性和精准性方面,都有非常大的优势。它是目前主要的大数据应用领域。
大数据营销不仅仅是用大数据找出目标顾客,向其发布促销信息,它还可以做到:
实现渠道优化。根据用户的互联网痕迹进行渠道营销效果优化,就是根据互联网上顾客的行为轨迹来找出哪个营销渠道的顾客来源最多,哪个来源顾客实际购买量最多,是否是目标顾客等等,从而调整营销资源在各个渠道的投放。例如东风日产,它利用对顾客来源的追踪,来改进营销资源在各个网络渠道如门户网站、搜索和微博的投放。
精准营销信息携神推送。精准建立在对海量消费者的行为分析基础之上,消费者网络浏览、搜索行为被网络留下,线下的购买和查看等行为可以被门店的POS机和视频监控记录,再加上他们在购买和注册过程中留下的身份信息,在商家面前,正逐渐呈现出消费者信息的海洋。
一些企业通过收集海量的消费者信息,然后利用大数据建模技术,按消费者属升猛性(如所在地区、性别)和兴趣、购买行为等维度,挖掘目标消费者,然后进行分类,再根据这些,对个体消费者进行营销信息推送。比如孕妇装品牌十月妈咪通过对自己微博上粉丝评论的大数据分析,找出评论有“喜爱”相关关键词的粉丝,然后打上标签,对其进行营销信息推送。京东商城副总经理李曦表示:“用大数据找出不同细分的顾客需求群,然后进行相应的营销,是京东目前在做的事情。”小也化妆品将自身网站作为收集消费者信息的雷达,对不同消费者推荐相应的肌肤解决方案,创始人肖尚略希望在未来,大数据营销能替代网站的作用,真正成为面向顾客的前端。
打通线上线下营销。一些企业将互联网上海量消费者的行为痕迹数据与线下购买数据打通,实现了线上与线下营销的协同。比如东风日产,线上与线下的协同营销方式为:其门户网站带来订单线索,而通过这些线索,服务人员进行电话回访,从而推动顾客在线下交易。在此过程中,东风日产记录了消费者进入、浏览、点击、注册、电话回访和购买各个环节的数据,实现了一个横跨线上线下,以大数据分析为支持的,营销效果不断优化的闭环营销通路。而国双科技,衡量某一地区线下促销活动的效果,就是看互联网上,来自这个地区对于促销内容的搜索量。一些企业,通过鼓励线下顾客使用微信和Wi-Fi等可追踪消费者行为和喜好的设备,来打通线上与线下数据流,银泰百货计划铺设Wi-Fi,鼓励顾客在商场内使用,然后根据Wi-Fi账号,找出这个顾客,再通过与其它大数据挖掘公司合作,以大数据的手段,发掘这个顾客在互联网的历史痕迹,来了解这个顾客的需求类型。
二、大数据用于内部运营
相比大数据营销,大数据在内部运营中的应用更深入,对于企业内部的信息化水平,以及数据采集和分析能力的要求更高。本质上,是将企业外部海量消费者数据与企业内部海量运营数据联系起来,在分析中得到新的洞察,提升运营效率。(详见P96表5:大数据在内部运营中的应用)
表5
三、大数据用于决策
在大数据时代,企业面对众多新的数据源和海量数据,能否基于对这些数据的洞察,进行决策,进而将其变成一项企业竞争优势的来源?同大数据营销和大数据内部运营相比,运用大数据决策难度最高,因为它需要一种依赖数据的思维习惯。
已有少数企业开始尝试。比如国内一些金融机构在推出一个金融产品时,会广泛分析该金融产品的应用情况和效果、目标顾客群数据、各种交易数据和定价数据等,然后决定是否推出某个金融产品。
但是,中国企业家研究院在调研中发现,目前中国企业当中,大数据决策的应用非常之少,许多企业领导者进行决策时,仍习惯于凭借历史经验和直觉。
大数据产品——企业利润滋长的新源泉
大数据除了用于运营外,还能够与企业产品结合,成为企业产品背后竞争力的核心支持或者直接成为产品。提供大数据产品的企业分为两类,直接提供大数据产品的企业,以及将大数据作为产品和服务核心支撑的企业。前者主要为大数据产业链中提供数据服务的参与者,包括数据拥有者、存储企业,挖掘企业、分析企业等,后者则主要是那些以大数据为产品核心支撑的企业,它们大多是互联网企业,其产品和服务先天就有大数据基因,这些企业包括搜索引擎、在线杀毒、互联网广告交易平台以及众多植根于移动互联网之上,为用户提供生活和资讯服务的APP等。
表3
表4
一、大数据作为产品核心支持
它们主要在以下几方面使用大数据:
1、提供信息服务。很多互联网企业通过对海量互联网信息和线下信息的整合和分析,为个人和企业提供信息服务,典型的如网络、去哪儿、一淘、高德地图、春雨医生等等。在美国,一些互联网企业甚至根据大数据提供更深度的预测信息服务,美国科技创新公司farecast,通过分析特定航线机票的价格,帮助消费者预测机票价格走势。
2、分析用户的个性化需求,借此提供个性化产品和服务,或者实现更精准的广告。典型的有移动社交工具陌陌、网络、腾讯、广告交易平台品友互动以及一些互联网游戏商。这种应用往往先是收集海量用户的互联网行为数据,将用户分类,根据不同类型的用户,提供个性化的产品,或者提供个性化的促销信息。比如网易等门户网站推出了订阅模式,让使用者按照个人喜好方便地定制和整合不同来源的信息。
3、增强产品功能。对于很多互联网产品,如杀毒软件、搜索引擎等等,海量数据的处理能够让产品变得更聪明更强大,如果没有大数据,产品的功能就大大减弱。比如奇虎360公司的360杀毒软件,凭借每天海量的杀毒处理,建立了庞大的病毒库,这使它能够更快地发现病毒,而一些小的杀毒软件公司则无法做到这一点。
4、掌控信用状况,提供信贷服务。阿里巴巴上汇集了海量中小企业的日常资金与货品往来,通过对这些往来数据的汇总与分析,阿里巴巴能发现单个企业的资金流与收入情况,分析其信用,找出异常情况与可能发生的欺诈行为,控制信贷风险。
5、实现智能匹配。婚恋网站、交易平台等,利用大数据可以进行精准而高效的配对服务。网易花田会挖掘用户行为数据,比如点击哪些异性的页面,发表什么样的评论,建立用户兴趣模型,从而挖掘到用户所期待另一半的类型,然后主动推荐与对方匹配度比较高的人选。2010年,阿里巴巴尝试性地推出“轻骑兵”服务,由阿里巴巴将中国各产业集群地的供应商与海外买家的个性采购需求进行快速匹配,所凭借的,就是对供应商的海量交易数据信息的整合与挖掘。
二、大数据直接作为产品
对一些企业,大数据直接成为了产品,这些产品包括海量数据、分析、存储与挖掘的服务等,目前大数据产业链正在形成过程中,出现了一批开放、出售、授权大数据和提供大数据分析、挖掘的公司和机构,前者主要是一些拥有海量数据的公司,将数据服务作为新的盈利来源。如大型的互联网平台、民航、电信运营商、一些拥有大数据的政府机构等等,后者主要包括一些能够存储海量数据或者将海量数据与业务场景结合,进行分析和挖掘,或者提供相关产品的公司,如IBM、SAP、拓而思、天睿公司。它们为大数据应用者们提供海量数据存储、数据挖掘、图像视频、智能分析等服务以及相关系统产品。
大数据平台——企业群落繁荣的滋养剂
而网络已建成了包括网络指数、司南、风云榜、数据研究中心和网络统计在内的五大数据体系平台,帮助其营销平台上的企业了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息。
为解决这些问题,各个平台在积极地努力。比如阿里巴巴建立了数据委员会,在统一数据格式标准、从源头上保证数据的质量,采集和加工出精细化的数据,确保其能符合平台企业的应用场景等方面,不遗余力地尝试。尤其在大数据精细化方面,阿里巴巴更是作为其大数据战略的重点。这方面,腾讯目前也在加快步伐。比如新版腾讯网出现了“一键登录”的提示,用户可以在上面通过一些细分标签,订阅自己关注的内容。实际上,这也是腾讯收集更精细化的用户兴趣数据的一个有效手段。
Tips
大数据实战手册
将大数据应用于内部运营中时,企业会遇到一些常见问题
1企业如何获取与分析数据?
互联网是大数据的一个主要来源,一些线下的传统企业很难获得。但它们可以:
a和拥有或能抓取海量数据的平台、企业以及政府机构合作。比如淘宝上的电商就购买淘宝收集的海量数据中与自身运营相关的部分,用于自身业务。再如卡夫通过与IBM合作,在博客、论坛和讨论版的内容中抓取了47.9万条关于自己产品的讨论信息,通过大数据分析出消费者对卡夫食品的喜爱程度和消费方式。
b建立自己在互联网上的平台,比如朝阳大悦城利用自己的微信、微博等平台收集消费者评论数据。
c许多传统企业没有分析海量数据的能力,此时它们可以和大数据分析和挖掘公司合作,目前市场上已经有天睿公司、IBM、百分点、华胜天成等一批提供大数据分析和挖掘服务的公司,它们是传统企业进行大数据分析可以借助的力量。
2如何避免大数据应用时的部门分割?
对于许多企业,其信息流被各部门彼此分割,数据难以互通,对于这种情况下,大数据的共享和汇集就只是一个泡影,更难以实现大数据的深度应用。
要打通部门之间信息分割的局面,首先要建立统一的、集中的数据系统。就像立白信息与知识总监王永红所说的,“要真正用好大数据,企业要采用大集中的信息系统。”从更深入的角度来谈,企业信息流的部门分割,更在于企业部门之间的分割,比如有一些企业的营销按照渠道分割,导致对于顾客的大数据收集和分析效果大打折扣。
IBM智慧商务技术总监杨旭青认为,“很多时候由于组织结构问题,大数据分析有效性大大降低了。”这就需要组织与流程层面的重新设计,在这方面,阿里巴巴的部门负责人轮岗制度,对于打破部门壁垒无疑是一剂好药。而一些企业为了打破部门分割,建立了矩阵型的组织结构,强化部门间的横向合作,这些无疑为大数据的汇集、共享与应用创造了良好条件。
3如何让业务人员重视大数据的应用?
解决这个问题,一方面在于一把手对整个企业数据文化的倡导,比如1号店董事长于刚就要求业务人员无论在开会,还是汇报工作时,都以数据说话,而马云更是将大数据提升到了战略高度。
另一方面,也在于数据部门的带动,阿里巴巴数据委员会负责人车品觉分享了经验,“因为运营部门的业务人员很难看到大数据的潜力,可以首先从一些对业务见效快,见效显著的数据项目出发,通过一两个项目的成功,调动对方的积极性,然后再逐步一个个地引导。”
4为何大数据工作与运营需求脱节?
这往往是由于数据人员与业务人员视角、专业知识不同而导致的。大数据人员做了很多努力,但是业务人员却认为这些努力无关痛痒。如何解决这个问题?
有的企业从组织设计上发力,将大数据纳入业务分析部门的管理之下,用业务统驭数据。对于朝阳大悦城,由主要负责战略和经营分析的部门来管理大数据工作,其中的大数据分析人员则作为支持人员。在负责人张岩看来,大数据要靠商业法则指导,关键是找到业务需求的点,然后由数据分析和挖掘人员实现。在具体操作中,大悦城对微信的数据挖掘,挖掘什么样的关键词,由业务分析人员确定,而具体挖掘则由数据部门做;有的企业从流程设计上着手,推动业务部门与数据部门人员之间的沟通,建立数据人员工作与效果挂钩的考核机制。
例如阿里巴巴根据数据挖掘的成效(比如带来的商品转化率的提升)来考核数据挖掘师,考核数据分析师则看其分析结果能否出现在经营负责人的报告中。从数据部门自身角度则需要降低运营部门使用数据的障碍和门槛,比如立白集团的数据人员会努力尝试向运营部门提供更易懂、更生动的图形化数据分析界面,在立白老板办公室上,就有一份“客户运营健康体检表”,让老板对全国经销商的当月销售情况一目了然。再如阿里巴巴开发的无线Bi,让经营人员在手机上也可以看到大数据分析结果,拿车品觉的话说,“以数据之氧气包围经营人员。”
❷ 大数据时代的案例分析
个案一
你开心他就买你焦虑他就抛
华尔街“德温特资本市场”公司首席执行官保罗·霍廷每天的工作之一,就是利用电脑程序分析全球3.4亿微博账户的留言,进而判断民众情绪,再以“1”到“50”进行打分。根据打分结果,霍廷再决定如何处理手中数以百万美元计的股票。
霍廷的判断原则很简单:如果所有人似乎都高兴,那就买入;如果大家的焦虑情绪上升,那就抛售。
这一招收效显著——当年第一季度,霍廷的公司获得了7%的收益率。
个案二
国际商用机器公司(IBM)估测,这些“数据”值钱的地方主要在于时效。对于片刻便能定输赢的华尔街,这一时效至关重要。曾经,华尔街2%的企业搜集微博等平台的“非正式”数据;如今,接近半数企业采用了这种手段。
●“社会流动”创业公司在“大数据”行业生机勃勃,和微博推特是合作伙伴。它分析数据,告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发表的正确内容,备受广告商热爱。
●通过乔希·詹姆斯的Omniture(著名的网页流量分析工具)公司,你可以知道有多少人访问你的网站,以及他们呆了多长时间——这些数据对于任何企业来说都至关重要。詹姆斯把公司卖掉,进账18亿美元。
●微软专家吉拉德喜欢把这些“大数据”结果可视化:他把客户请到办公室,将包含这些公司的数据图谱展现出来——有些是普通的时间轴,有些像蒲公英,有些则是铺满整个画面的泡泡,泡泡中显示这些客户的粉丝正在谈论什么话题。
●“脸谱”数据分析师杰弗逊的工作就是搭建数据分析模型,弄清楚用户点击广告的动机和方式。
处理和分析工具
用于分析大数据的工具主要有开源与商用两个生态圈。
开源大数据生态圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb
商用大数据生态圈:
1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、数据集市:QlikView、 Tableau 、 以及国内的Yonghong Data Mart 。
❸ 为什么要学习数据分析
大数据”一词的火热程度已经毋庸置疑,在互联网高速发达的今天,基本上各行各业都会运用到大数据。无论是大数据的从业者还是普通的群众都有一个共同的感触:大数据很有用!为什么越来越多的人想学习大数据分析,进入到大数据行业,千锋武汉小编用13个案例告诉你!
例子1:在09年流感爆发的时候,google通过对人们输入词条的分析,挖掘出了有效及时的指示标,比通过层层收集的官方数据惊人很多。
例子2:Farecast通过对于机票数据的趋势变化情况,提供票价预测的服务,目前公布准确度高达75%,现在被微软收购,整合在了bing的搜索中。
例子3:Xoom是从事跨境汇款业务的公司,处理过的一个案例是,单独看一笔交易是合法的,但是重新检查了所有的数据之后,发现犯罪集团正在进行诈骗。
例子4:hadoop分析VISA的数据,将原来需要一个月的时间缩短为13分钟。
例子5:亚马逊三分之一的销售额来自个性化推荐系统。
例子6:美国折扣零售商能够通过用户购买商品的历史,判断出是否怀孕。
例子7:UPS有6W辆车,通过对车俩损害的数据挖掘,能够及时的预测那些车辆需要维修,达到预警的目的。
例子8:日本通过研究驾驶员的坐姿数据,用来作为汽车防盗系统中。
例子9:UPS通过对于位置数据的分析,获取最佳行车路径。
例子10:IBM开发了一套复杂的预测模型,完成了电动汽车动力与电力供应系统的预测。
例子11:微软和谷歌以及网络等搜索引擎的拼写检查以及纠错提示,有效的利用的数据废气。
例子12:巴诺通过分析人们在阅读的时候的行为,得出人们往往会放弃长篇幅的非小说类书籍。
例子13:The-numbers通过对于历史电影相关的数据的相关关系,来预测电影票房。
从上面13个应用实例中,不难发现大数据分析早已和我们的生活息息相关,大数据产业已进入发展的“快车道”,急需大量优秀的大数据人才做后盾。
❹ 大数据应用案例不可不看的7大领域
大数据应用案例不可不看的7大领域
在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。
健康医疗 温情暖意
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
未来的医疗片段:由“可穿戴设备”或其他终端收集到人体生理数据,自动传入云端,进行数据分析与处理,再将其结果发给医生,后者给出诊断或康复建议。例如日常的健康监督、运动及饮食指导,或对高血压、糖尿病等慢性病进行日常管理,甚至有望为每个人定制出自己的健康全纪录。
智能交通 路路畅通
杭州诚道科技采用英特尔Apache Hadoop发行版,使得海量图像和视频数据不但实现了可靠和高性能的存储,而且还能被大量的使用者快速地访问和使用。浙江省某市可保存的历史违法数据从3个月延长到24个月,从24亿条过车数据中完成机动车的号牌精确查询和行车轨迹查询,仅需不到1秒的时间。
未来的交通片段:无人驾驶将释放驾驶者的双手,提前预知路况信息,并准确的控制车辆状态。呆在驾驶仓中的人们将享受与家中相同的娱乐休闲体验,车载应用尽在云端。例如挡风玻璃,类似于手机屏幕,可实现多点触摸、支持视频通话,在玻璃上比划几下就能导航、显示路况、查询天气和附近美食、阅读电子书、回复邮件、互动游戏等等。
魅力体育 完美呈现
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
未来的体育片段:今后,比赛日将会带给球迷们终身难忘的回忆。他们不仅能收到来自队员为其量身定制的信息,还能够通过手机支持的忠实度账户获得购买特许权,甚至在去洗手间排队的间隙都可以收到实时战况;如果遇上有人情绪失控,球迷们还能通过手机立即报告,专人将会迅速呼叫保安人员,以保证比赛顺利运行并提高赛场整体管理水平;你能想象从手机上投标赛后新闻发布会的座位吗?或者在衣帽间外和球员照相?这些都将不再是梦想。
智慧教育 创新源泉
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
未来教育片段:未来个性化学习终端,将会更多的融入学习资源云平台,根据每个学生的不同兴趣爱好和特长,推送相关领域的前沿技术、资讯、资源乃至未来职业发展方向,等等,并贯穿每个人终身学习的全过程。
全面迎接金融大数据时代
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。
未来金融保险片段:通过大数据处理对个人信用信息的完善管理,公共机构能够将风险降到最低,从而实现社会管理效率的最大化。
零售营销 极致体验
作为中国商务部重点扶持的最大零售企业之一,北京华联集团通过部署Oracle 零售应用解决方案,以优化运营管理,进而提高商业敏捷性,并提升关键货物、定价、存货、供应链和交易流程的管理和实施。全面支持其旗下各项业务的不断增长,包括大卖场、综合超市、百货公司以及商业地产等。
未来零售片段:当一位顾客踏进百货店大门的一刻起,门店的店员可以在便携式设备上查询这样的消费者大数据,他们可以轻松的检索消费者个人档案,并从其最近的社交媒体信息中了解该顾客的近况,你就知道他/她的名字、身高、在店内及网上的支付记录,甚至是他对生活、宇宙及一切事物的看法等等都了如指掌,比如他是准备好好过个假期还是为寻找一件适合她的晚礼服而烦恼着。
电信大数据异军突起
北京信合运通科技有限公司选择IBM PowerLinux平台作为信合大数据解决方案的基础架构平台已在国内帮助十多家电信运营商完成了大数据和分析项目的实施,是电信行业最领先的独立软件开发商。
未来电信片段:电信运营商们可以利用大数据为自身的产品服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确地进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的黏度;还可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;还可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司的经营管理和市场竞争策略;
上述7个领域是大数据应用最多的领域,当然,随着大数据技术的日益成熟,还会涌现出很多其他大数据应用领域,以及很多新的应用案例。
❺ 大数据技术有在工业领域的成功应用案例吗
. 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
IBM利用其行业领先的大数据与分析技术,支持深圳市儿童医院搭建信息集成平台,整合原有分散在多系统中的海量数据,实现各部门的信息共享;同时通过商业智能分析对集成数据进行深入挖掘,为医院各部门人员的科学决策提供全面的辅助,提升医院的服务水平和管理能力。
2. Informatica帮助紫金农商银行深挖数据价值
紫金农商银行ODS数据仓库项目建设使用Informatica产品完成数据的加载、清洗、转换工作显得尤为简单,图形化、流程化设计使维护人员能够快速、顺畅的操作,即使数据源结构发生变化,也不会像以前必须修改大量的程序代码,只需要在PowerCenter中配置一下即可。
3. 华为大数据一体机服务于北大重点实验室
经过大量的前期调查,比较和分析准备工作,北大重点实验室选择了华为基于高性能服务器RH5885 V2的HANA数据处理平台。HANA提供的对大量实时业务数据进行快速查询和分析以及实时数据计算等功能,在很大程度上得益于华为RH5885 V2服务器的高可靠、高性能和高可用性的支撑。
4. IBM携手汉端科技为飞鹤乳业打造全产业链可追溯体系
IBM、汉端科技与中国飞鹤乳业联合宣布,通过利用IBM业界领先的全面大数据与分析能力,和汉端科技在商业智能领域丰富的行业经验,飞鹤乳业实现了产品的可追溯与食品安全的数字化管理,完成了系统数字化、透明化、服务化的升级。
5. 浪潮大数据平台大大提升了济南的警务工作能力
浪潮在帮助济南公安局在搭建云数据中心的基础上构建了大数据平台,以开展行为轨迹分析、社会关系分析、生物特征识别、音视频识别、银行电信诈骗行为分析、舆情分析等多种大数据研判手段的应用,为指挥决策、各警种情报分析、研判提供支持,做到围绕治安焦点能够快速精确定位、及时全面掌握信息、科学指挥调度警力和社会安保力量迅速解决问题。
6. 英特尔携杭州诚道科技构建智能交通
面对大数据挑战,杭州市和杭州诚道科技有限公司紧密合作,部署了基于英特尔大数据解决方案的诚道重点车辆动态监管系统,通过集中的数据中心将全市卡口、电子警察、视频监控、流量检测设备、信号机、诱导设备等有效地连接起来,从交通案件侦破能力、交通警察对机动车辆的监管能力到利用关联车辆的数据分析能力,都得到了极大提升。
7. 步步高集团借Oracle Exadata 大大提高了IT投资回报率
步步高集团采用 Oracle Exadata数据库云服务器搭建信息化平台,凭借Oracle Exadata数据库云服务器的高扩展性、安全性和冗余性,步步高集团得以在该基础架构上运行一系列Oracle零售行业以及Oracle的应用软件。此外,基于Oracle Exadata的步步高IT新架构比传统架构拥有更好的性价比,最大限度地增加了IT的投资回报率。
8. 华为Anti-DDoS助阿里巴巴检测DDoS变革
阿里巴巴现网多个数据中心出口都部署了华为的Anti-DDoS解决方案,平均每天防护的DDoS攻击次数超过100次,每年达数万次,峰值防护的DDoS攻击流量超过100Gbps。如今,DDoS攻击在阿里巴巴安全工程师眼里已经习以为常,由华为Anti-DDoS方案自动调度进行清洗防护即可。“双11”期间,华为Anti-DDoS方案一如既往地成功防护了多轮DDoS攻击事件,有力保障了阿里巴巴网络交易的顺畅平稳。
9. 华为大数据方案在福建移动的应用
为进一步提升外呼成功率,从2014年初开始,福建移动联合华为公司开展基于大数据的精准营销工作,采用大数据分析的方法选择外呼目标价值用户。基于大数据分析方法和传统外呼方法分别提供20万目标客户清单,在前台无感知下进行对比验证,确保对比效果不受人为因素影响,经过外呼验证,基于大数据分析方法较传统方法外呼成功率提升50%以上,有效支撑了福建移动4G用户发展战略。
10. 北京市人民政府“12345”便民电话中心选择Oracle Exadata 实现便携服务
为了进一步提升部门的调度能力、办理水平和群众满意度,北京市人民政府“12345”便民电话中心选择Oracle Exadata数据库云服务器,升级成为北京市非紧急救助服务综合受理调度平台,通过Oracle Exadata Database Machine支撑起新平台的数据库访问需求。升级后的平台能够整合全市的便民呼叫服务,支撑来自群众的各类诉求、求助、批评和建议,并可为公众提供方便、快捷的公共信息服务,真正成为全市的舆情中心、信息汇集中心和城市名片。
11. 民生银行借IBM BigInsights应对金融业的大数据挑战
IBM BigInsights大数据解决方案和企业级NoSQL数据库SequoiaDB合作,为民生银行搭建低成本、高性能、高可靠且水平扩张的数据平台,帮助民生银行通过大数据分析应对金融业的大数据挑战,完善交易流水查询分析系统,产业链金融管理系统,以及私人银行产品货架管理系统。
12. 中信银行信用卡实施EMC Greenplum 数据仓库解决方案
中信银行信用卡中心选择实施EMC Greenplum 数据仓库解决方案。Greenplum 数据仓库解决方案为中信银行信用卡中心提供了统一的客户视图,借助客户统一视图,中信银行信用卡中心可以更清楚地了解其客户价值体系,从而能够为客户提供更有针对性和相关性的营销活动。基于数据仓库,中信银行信用卡中心现在可以从交易、服务、风险、权益等多个层面分析数据。通过提供全面的客户数据,营销团队可以对客户按照低、中、高价值来进行分类,根据银行整体经营策略积极地提供相应的个性化服务。
13. 惠普助力雅昌集团掘金大数据
成立于1993年的雅昌集团首创“传统印刷+IT技术+文化艺术”的商业模式,形成环环相扣的文化产业链,为艺术市场提供全面、综合的一站式服务。基于企业内容数据管理体系,惠普为雅昌搭建了从数据采集、处理、管理到应用的全过程处理流程,使雅昌可以快速利用所需数据,缩短新品上线时间,快速响应市场变化。
14. 德国足球队采用SAP大数据方案迎战世界杯
德国足协和SAP公司通过联合创新引入SAP Match Insights解决方案,该方案基于SAP HANA平台运行处理海量数据,可以为球员和教练提供一个简明的用户界面,帮助双方开展互动性更强的对话,分析球队训练、备战和比赛情况,从而提升球员和球队的成绩。
15. 1号店借Oracle Exadata改善终端客户体验
1号店采用Oracle Exadata数据库云服务器成功优化统一整合的数据平台,满足了不断增长的业务处理需求,并进一步改善了终端客户体验。经过Oracle Exadata整合后的新平台采用混合负载互备架构,将平均处理性能提升7倍,既可以支持目前规划业务量的业务处理,还能够随着业务量的增长进行在线升级、扩容,满足处理能力和数据量的增长需求。软、硬件集成设计的Oracle Exadata 协助解决了1号店的I/O瓶颈问题,实现了比传统架构更高的性能和可扩展性。同时,基于Exadata的1号店IT新架构比传统架构拥有更好的性价比,最大限度地发挥了IT投资回报率。
16. 大数据在青岛银行:提升银行交易性能、简化运营和管理
利用IBM大数据专家PureData,青岛银行能够高效集成业务数据,简化运维。PureData for Transactions作为青岛银行重要业务处理系统,能够在一个系统中整合超过几十个数据库,同时提供良好的性能、可用性和可扩展性支持实现广泛的业务目标,例如地域扩张,突发的业务交易高峰,新柜面、流程银行等大规模的业务上线等。
17. Informatica方案帮助南京儿童医院实现信息互通共享
南京市儿童医院目前已建成包括HIS、LIS、PACS、电子病历EMR、医生工作站、移动护理、病案、财务管理、库房管理和手术麻醉等几十个应用系统,这些异构系统间数据调用分散,不能集中统一标准化管理。通过采用Informatica ETL工具构建数据仓库系统,并基于数据仓库建设医院数据调用公共资源中心库,南京市儿童医院实现了实时的数据交互和信息共享,干净、标准的数据为跨应用系统数据关联分析打下扎实基础。
18. 东吴大学采用达索系统EXALEAD启动大数据应用暨产学合作
台湾东吴大学采用达索系统EXALEAD大数据智能应用开发解决方案,全方位地整合校务信息,积极开发校务经营发展的各项应用。此外还将启动三方产学合作计划,协助建立校内大数据相关课程、人才培训和实习机制,使学生自入学就开始不断提升其未来职场所需的关键竞争力,学用合一,实现学校、学生、企业三赢。
19. 网络大脑PK人脑 大数据押高考作文题
为了帮助考生更好地备考,网络高考作文预测通过对过去八年高考作文题及作文范文、海量年度搜索风云热词、历年新闻热点等原始数据与实时更新的“活数据”进行深度挖掘分析,以“概率主题模型”模拟人脑思考,反向推导出作文主题及关联词汇,为考生预测出2014年高考作文的六大命题方向。
20. IBM助力同仁医院构筑强大的分析体系
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
21. 微软助上海市浦东新区卫生局更加智能化
作为上海市公共卫生的主导部门,浦东新区卫生局在微软SQL Server 2012的帮助之下,积极利用大数据,推动卫生医疗信息化走上新的高度:公共卫生部门可通过覆盖区域的居民健康档案和电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。与此同时,得益于非结构化数据的分析能力的日益加强,大数据分析技术也使得临床决策支持系统更智能。
22. 湖南电信通过分析掌握电信市场动向、针对性定制营销计划
利用IBM大数据专家PureData,湖南电信实现了通过分析掌握市场整体经营情况、快速制定市场策略以及加强客户经理营销维系的高效执行。PureData for Analytics作为湖南电信本地数据集市建设工程重要组成部分,高效整合了湖南电信旗下各本地网数据,为进一步分析创造先机。
23. 携程借SQL Server增强了数据采集和掌控
作为国内领先的综合性旅行服务公司,携程计算机技术有限公司曾面临分支机构、服务城市和员工数量的增长所带来的运营数据分散和数据集成难的 IT 问题。借助微软SQL Server 2012 商业智能解决方案,携程增强了其对所有下属分支机构的数据采集和掌控,大大减少了计划性停机时间以及非计划性停机的时间,灵活的部署选项也可以根据携程的需要实现从服务器到云的扩展。
24. 上海公共研发平台部署Oracle Exadata应对扩展需求
上海公共研发平台部署Oracle Exadata数据库云服务器,以应对其系统和应用的扩展需求。Oracle Exadata融合了一系列同类最佳的预配置的服务器、网络、存储和软件,能为数据仓库和在线事务处理应用程序提供超强性能。上海公共研发平台运行Oracle Exadata期间相对稳定,CPU占用率控制在5%以内,极大改善了用户应用体验。同时,Exadata平台的可扩展性极好的满足了上海公共研发平台的系统需求,目前整个公共研发平台的20多个应用系统已经全部迁移到Exadata上,应用部署量增长1倍,且运行十分稳定。
25. 360手机卫士10KB解决iPhone骚扰
360手机卫士通过对海量数据的运算和精准匹配下发,将一组大小仅为10KB的数据即1000个骚扰号码同步到用户手机上,打造个性化的骚扰号码数据库,此外,每天更新的骚扰号码库数据,会依据标记趋势调整骚扰号码库中各类数据比例,即每一位360手机卫士用户手机中的1000个骚扰号码都是动态的,随地域、身份以及骚扰趋势的变化而变化。
26. 神州数码助张家港市更“智慧”
在张家港实践的城市案例中,市民登录这款“神州数码”研发的市民公共信息服务平台后,市民只要凭借自己的身份证和密码,即可通过该系统平台进行240余项“在线预审”服务、130余项“网上办事”服务等,还可通过手机及时查看办事状态。相比于以前来说,市民办事的时间最少可以节省一半以上。
27. IBM助中网组委会构建安全和敏捷的内联网
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
28. Cortana基于微软Bing大数据预测世界杯
微软为Cortana增加了世界杯预测的功能,基于微软Bing大数据,并综合考虑世界杯各支球队的过往比赛结果、比赛时间、天气情况、主场优势以及其他因素,使用大量的博彩市场公开数据、民意调查、社交媒体以及其它在线数据,利用大数据分析来判断每场比赛的结果。
29. 中科曙光助同济大学科研领域再创新高
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
30. 华为助农行完成海量数据分布式处理的需求
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。
❻ 有哪些大数据分析案例
如下:
1. 大数据应用案例之:医疗行业
1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
2)大数据配合乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
2. 大数据应用案例之:能源行业
1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。
通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。
因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。
为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户
法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。
他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。
这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略
北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。
结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
定价团队的分析围绕着三个关键维度:
1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
5、大数据应用案例之:网络营销行业(SEM)
很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。
在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。
企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。
通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。
6、大数据应用案例之:电商行业
意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。
虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。
从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。
7、大数据应用案例之:娱乐行业
微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。
今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。
总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。
❼ IBM工程师James:如何拥抱大数据
对于企业而言,能否驾驭这些信息资源,就意味着新的业务增长点、新的利益增长点,数据已然成为企业的生命。 IBM杰出工程师、InfoSphere Stream高级开发经理James R Giles博士 在IBM杰出工程师、InfoSphere Stream高级开发经理James R Giles博士看来,数据本身是下一种的自然资源,我们可以开掘它、转变它、销售它,有的时候甚至要保护它,就像自然资源一样,我们也需要做同样的事情来对待大数据。但相对于自然资源来说,大数据是无限的,在不断的增加,而现在的我们就是淹没在数据中。 James R Giles博士表示IBM现在正在建立一个完整的、一整套的能够解决大数据挑战的解决方案,既有系统,也有基础架构、服务、云以及中间件,也有数据仓库技术的拓展,另外也有一些新的像Hadoop技术,以及出现的一些新技术,像流计算等等,这些都是我们可以从数据当中发掘价值的一种方式。 众所周知,数据是各式各样的,移动数据和静态数据、结构性、非结构性数据,那么自然就需要有不同的方式来处理这些数据。可能我们可能需要对这个数据进行即时的反馈,可能需要快速对于客户的反馈进行回应,对于静态的数据,我们不用担心它的结构和管理的问题,有时候我们可能需要各种形态的数据,需要使得数据随时可以获得。有了这样一些功能的时候,人们现在开始越来越依赖的一件事情是,要能够去管理这些数据,能够理解,能够从不同的数据源,不同类型的分析中去理解,我们怎么样得出结论,怎么样做出决策,所以管理、安全、商业的持续性都是这些企业现在所需要的,他们需要拥抱新的大数据时代。 案例一解析:电子邮件营销 与IBM合作中,IBM帮助他们将分析性能提高了40%。他们需要去分析客户的电子邮件,这样就知道每一个客户最佳的发送时间是什么,我们得做几件事情,把分析性能提高了,分析时间从几个小时缩减为几秒钟。另外,因为他们能够更多地分析这个数据,更加深刻地分析这些数据,他们就可以更好地对于每一个客户进行优化,所以很多客户电子邮件营销活动有效性就提高了15-25%,这也很快变成了一些底线的收入。 这个案例说明使用大数据技术能够使得你更好地了解你的客户,更好地和客户进行互动。 案例二解析: 一家亚太地区的远程通讯公司,这家公司需要一些具体的细节的数据,而且数据的数量在急剧增加,他们使用传统技术的时候,他们把数据输入到数据仓库的时候进行处理,然后获得结果,但是他们却没有办法在大数据时代进行传统的操作,所以IBM公司帮助他们和我们的数据仓库结合起来,给他们做流计算,同时在数据的收集和数据的转换过程中急剧加速了数据的处理。 结果,他们发现结果数据合并的时间缩短了91%,数据加载时间缩短了92%,存储需求降低了93%,他们使用服务器的数量减少了85%。这不仅从IT基础架构方面帮助了他们,还带来其它的利益,他们现在可以提供一些实时的服务。 与此同时,IBM发现了五种高价值的大数据的用户案例,一是大数据用来探究查找可视化和了解所有的大数据,提升业务知识。二是实现增强型客户视图;三是安全性、智能的扩展、四是运营的分析;五是数据仓库的扩充。
❽ 关于大数据应用有什么例子
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。
有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
❾ IBM Power全面推动大数据分析发展
IBM日前在2015中国大数据技术大会上分享了其在大数据分析领域的最新成果,阐述了面向大数据分析领域的IT基础架构的最新战略。针对企业在认知时代面临的大数据分析工作负载,IBM坚信要以全新的IT基础架构作为支持。凭借产品和解决方案的持续革新,IBM致力于助力大数据应用创新,通过打造基于Power的本地生态系统,全面推动本地大数据分析技术的发展。
随着互联网和移动互联网技术的进一步发展,在数据量激增的同时,数据类型也变得更为复杂多样。如何快速处理这些数据使其产生价值,如何结合结构化与非结构化数据分析进行预测、推理、感知的判断并采取相应行动,成为企业亟须思考的难题。面对当前挑战,企业需要能够处理和分析大量结构化与非结构化数据,具备高可靠性和经济效益的认知系统。未来,随着数据量的进一步增长,企业将需要一个具备更强事务处理能力、更灵活调配系统架构的领先IT 基础架构。
IBM Power一直致力于凭借领先的IT基础架构,满足企业的大数据分析需求,帮助企业实现数字化转型。针对大数据分析与认知工作负载,IBM今年推出了多款Power产品。Power Systems LC服务器基于OpenPOWER基金会创新成果,针对企业大数据分析工作负载,能够提供比同等x86服务器更快的速度及更低的成本,帮助客户实现便捷、快速的部署。此外,IBM不仅凭借基于POWER8的Linux专属服务器帮助用户发展新兴应用,还通过企业级高性能Linux分区服务器为用户的关键应用提供支持,帮助企业发展新兴工作负载、实现业务转型。
着眼未来趋势,IBM坚信认知技术与思维是满足企业发展需要不可或缺的一部分。作为IBM在认知计算领域的卓越代表,沃森(Watson)在大数据处理与分析方面已取得突破性成就,拥有分析海量数据、处理并行复杂数据以及快速判断和应答响应等卓越能力。基于由IBM Power平台构建的高性能运算基础架构的支持,IBM正联合多家合作伙伴,推动沃森的应用。
除了不断革新Power硬件平台,IBM还通过对本地人才的培养推动大数据应用的创新。今年,IBM已联手CSDN成功举办了8期POWER8极限挑战赛,吸引了逾万人次参赛。IBM也成功举办了十余次培训沙龙,为开发者带来更多学习和交流的机会。此外,IBM还以不同形式联合合作伙伴为本地开发者提供基于Power的开源技术创新环境,帮助开发者加速其创新进程。
为提升本地合作伙伴的能力,IBM还与合作伙伴联手,积极推动本地开源技术生态系统的构建。在IBM“中国合伙人”战略的引领下,IBM与CSDN等伙伴联手启动Linux开源生态系统联盟,基于IBM多年来为开源领域提供的先进支持,携手国内ISV、开源技术社区、企业用户、创投公司等多方力量,共同打造一个基于Power技术的开源技术生态圈。IBM还联手OpenPOWER基金会成员推出了全新硬件加速ISV支持计划,为本地ISV免费提供基于RedPOWER服务器以及赛灵思FPGA的云端开发及测试环境,帮助ISV提升大数据、云计算等新兴技术研发能力,促进第二代分布式计算的发展。
IBM副总裁、大中华区硬件系统部总经理郭仁声表示:“认知时代的到来标志着信息技术的发展步入了全新阶段,也对企业的IT基础架构提出了更为严苛的要求。为了帮助企业更好地处理、分析数量庞大的结构化和非结构化数据,IBM Power将凭借扎实的硬件基础和深入的行业洞察,帮助企业构建全新的IT基础架构,更好地应对当前和未来包括大数据在内的种种挑战。”
❿ 大数据利用的六大现实商业案例
大数据利用的六大现实商业案例_数据分析师考试
大数据正在改变市场的竞争格局。而那些能够充分利用大数据分析的企业往往能够更快地向市场提供产品和服务,更好地保持与顾客需求和欲望的一致性。2014年,调研公司Gartner的调查发现,73%的受访企业在大数据方面进行了投资,或者计划在接下来的24个月内投资大数据项目;而2013年的这一数据比例则为64%。改善客户体验和流程效率被受访者排在最高的优先级。
客户体验的改善不管是在线上或线下都在发生着的,数据从智能手机、移动应用程序、POS系统和电子商务网站等等渠道进行收集。随着企业比以往任何时候都能够收集和分析更多的、且类型丰富的数据信息,企业现如今所进行哪些相关工作,以及为什么要进行都需要进行数据量化。而且,那是最灵活的调整自己的经营策略,以提高或维持市场份额的手段。在执行过程中,客户体验的改善有助于提高客户的忠诚度和企业营收的增长。另一方面,如果公司选择无视相关的数据,他们很可能会失去客户和交易,而将其拱手让给那些对于数据分析反应更敏捷,更精明的竞争对手。
企业流程的改进继续专注于提高效率,节约成本,以及提高产品或服务的质量。大数据可以提供比传统系统更深入的见解,因为其有更多的数据点和数据来源分析作为支撑。
无论企业的目标是为了促进营收增长、或是加快产品服务的上市速度、优化劳动力,或是实现其他操作方面的改进,其核心都在与变得更加积极主动,减少被动反应,这就意味着需要使用预测分析,以缩短学习曲线。
有许多使用大数据来提升和改善企业运营的方法,下面将为大家介绍六个典型的案例。
缩短上市时间
推出新的产品或服务涉及多个生命周期阶段,其中一些比另一些更容易加速。在过去的几十年中,药品制造商已经使用临床试验模拟学习速度,降低成本,并减少了参与试验患者的不必要的负担。借助云计算和大数据,临床试验的模拟可以变得更加有利于制造商和患者。
百时美施贵宝公司(bristol-myers squibb) 通过将其内部托管网格环境扩展到AWS云,减少了98%的临床试验模拟时间。该公司还进一步优化了剂量水平,使得药物产品更安全,并只需要较少的临床试验患者的血液样本。
由于临床试验对于数据是高度敏感的,百时美施贵宝公司建立了一个专门的,加密的VPN隧道链接亚马逊网关,并配置了虚拟私有云,以便使得其运行环境能够与公众客户进行隔离。
在迁入云中之前,科学家们使用一个共享的内部环境,所以运行大约数百个项目需要花费60小时。现在,每个科学家都有一个专门的环境,2000个项目大约在1.2小时内就能够处理完毕,而且不会引起影响到团队的其他成员。
迁移到AWS云之后,百时美施贵宝公司得以能够减少儿科研究临床试验受试者的人数,从60减少到40人,同时还缩短了一年多的学习研究时间。
优化劳动力
一些企业的人力资源部门正在使用人才分析和大数据来降低成本,进而有效管理人力资源相关的问题。大数据帮助他们能够有效的选择能够更好的适应企业的新员工,降低员工离职率,了解技能和现有市场劳动力的输出状况,并确定公司前向发展所需要的人才。
施乐公司使用大数据将其呼叫中心的人员流失率降低了20%。要做到这一点,就必须了解是什么原因导致了员工的离职,并确定如何改善员工的敬业度。
改善财务绩效
企业的财务部门已经不仅仅只是进行定期的报告和BI工作了,他们已经在开始利用大数据来降低风险和成本,寻找机会提高预测的准确性。具体地说,他们使用的数据来识别高风险客户和供应商,以阻止欺诈,找准收入泄漏,并发掘新的或更有效的商业模式。
最近,天气预测公司The Weather Company与IBM之间的合作将使企业用户得以更好地管理天气状况对于企业绩效的影响。据The Weather Company介绍,每年,仅在美国天气因素就会造成价值五千亿美元的经济影响。
这些气象数据是来自超过10万台的气象传感器和飞机,以及数以百万计的智能手机、建筑和路上奔跑的车辆。这些数据与其他22亿个独特的预测点的数据来源相结合,平均每天进行100多亿次的实时天气预报。例如,零售商可以使用这些数据信息来调整人员配置和供应链策略。而能源公司将能够借助这些天气数据信息改善供应和预测需求。保险公司将能够向其投保人警告恶劣天气条件,这样他们就可以减少在冰雹灾害天气发生汽车损坏的可能性。
智能化的销售
稍微修改一下企业的销售和营销策略就可能会对您企业的销售业绩产生深远的影响,特别是当通过大数据分析之后进行的有规划的修改。
想象一下,一个为期六周的直邮营销活动票面收益率的超过了70%。而根据直销协会的介绍,平均直邮回报率仅为3.7%。而杂货连锁店Kroger公司是如何做到的呢?一方面,他们根据客户个人的购物历史记录采用个性化的直接邮寄方式。
Kroger公司的客户会员卡计划,被食品行业评为第一。超过90%的客户使用会员卡购买产品。虽然也有其他因素的共同作用,使得Kroger公司的财务绩效如此骄人,但其连续45个季度的持续增长至少部分要归因于其客户忠诚计划。
最大限度地减少设备和资产故障
企业希望避免不必要的业务中断干扰和客户的焦虑。现在,传感器已经被嵌入到一切设备,企业可以使用这些数据信息,以确定何时需要对飞机,火车,汽车,及其它电器设备进行维修。理想情况下,当问题已经出现的时候,企业要了解这个问题是什么原因造成的,以及其如何能得到解决,最好有一个专业的维修队伍。
Pratt &Whitney公司是美国联合技术公司(United Technologies Corp.)下属的一个单位,该公司试图减少意外的飞机发动机维修。据Airinsight.com介绍,今天的发动机能够在飞机飞行过程中从多个快照收集约100个参数。相比之下,新一代的引擎能够收集关于连续飞行的5000个参数。这一过程中产生约2千兆字节的数据。使用这些数据信息,Pratt &Whitney公司及其合作伙伴IBM得以进行主动的维修。
利用客户的终身价值
如今的授权客户比以往任何时候都更加苛刻和善变。企业为了保持或增加市场份额,需要尽可能多地了解自己的客户,不断改善自己的产品和服务,并愿意调整自己的商业模式,以反映其客户的实际需求。
美国汽车租赁公司AvisBudget就一直致力于这方面。他们通过实施整合战略增加了市场份额,并取得了数亿美元的额外收入。主动参与确定客户价值细分,提供分层激励,提高客户的忠诚度。该公司的IT合作伙伴CSC公司采用模型预测AvisBudget客户数据库的终身价值,并验证了其使用多通道的营销活动和相应的分析。
现在的客户评估数据结合了其他数据,包括客户的租赁历史,服务问题,服务地区的人口统计,企业隶属关系和客户反馈等等。Avis Budget也收集和分析社交媒体数据。该公司有一个社交媒体专家团队专门进行品牌营销。该公司最近还更新了网站,以进一步改善客户体验,并且他们正在使用大数据预测区域性的车队配售和定价服务需求。
以上是小编为大家分享的关于大数据利用的六大现实商业案例的相关内容,更多信息可以关注环球青藤分享更多干货