『壹』 百度回收站的介绍
网络回收站是网络与联合国战略合作的大数据联合实验室项目推出首个解决方碰羡碰案,项目联合TCL奥博等正规拆解企业,共同致力于解决电子垃圾回收这一社会环保痛点。基于手机网络庞大的用户群,有效连接用户和正规回收厂商,充分利用网络大数据技术,对行业数据进行分析处理,打造绿色回收产业链,从而减少非正规渠道造成的危害派粗。12015年9月2日,联合国秘书长潘基文访华,首站与李彦宏对话,共商国际合作、经济发展与环境保护,并回答贴吧网友的问题。两人在访谈后还共同启动网络回收站直达号,并在回收站回收的第一台废旧笔记本电脑上签名,这台笔记本电脑随后将成为电子垃圾雕塑的一部分,作为联合国驻华系统收藏的艺术品,旨在增强中国大众对电子垃圾回收的意识,活动中潘基文称赞了联合笑谈国开发计划署和网络合作,将大数据技术应用于电子垃圾管理的创新,并表示“数据革命为世界走向可持续发展之路提供了有力工具。”
『贰』 怎么用百度大数据
网络大数据是以借口的形式呈现,是要收费的哦
『叁』 BAT三巨头开始挖掘大数据
BAT三巨头开始挖掘大数据
阿里巴巴CTO即阿里云负责人王坚博士说过一句话:云计算和大数据,你们都理解错了。
实际上,对于大数据究竟是什么业界并无共识。大数据并不是什么新鲜事物。信息革命带来的除了信息的更高效地生产、流通和消费外,还带来数据的爆炸式增长。“引爆点”到来之后,人们发现原有的零散的对数据的利用造成了巨大的浪费。移动互联网浪潮下,数据产生速度前所未有地加快。人类达成共识开始系统性地对数据进行挖掘。这是大数据的初心。数据积累的同时,数据挖掘需要的计算理论、实时的数据收集和流通通道、数据挖掘过程需要使用的软硬件环境都在成熟。
概念、模式、理论很重要,但在最具实干精神的互联网领域,行动才是最好的答案。国内互联网三巨头BAT坐拥数据金矿,已陆续踏上了大数据掘金之路。
BAT都是大矿主,但矿山性质不同
数据如同蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。
网络拥有两种类型的大数据:用户搜索表征的需求数据;爬虫和阿拉丁获取的公共web数据。
阿里巴巴拥有交易数据和信用数据。这两种数据更容易变现,挖掘出商业价值。除此之外阿里巴巴还通过投资等方式掌握了部分社交数据、移动数据。如微博和高德。
腾讯拥有用户关系数据和基于此产生的社交数据。这些数据可以分析人们的生活和行为,从里面挖掘出政治、社会、文化、商业、健康等领域的信息,甚至预测未来。
下面,就将三家公司的情况一一扫描与分析。
一、网络:含着数据出生且拥有挖掘技术,研究和实用结合
搜索巨头网络围绕数据而生。它对网页数据的爬取、网页内容的组织和解析,通过语义分析对搜索需求的精准理解进而从海量数据中找准结果,以及精准的搜索引擎关键字广告,实质上就是一个数据的获取、组织、分析和挖掘的过程。
除了网页外,网络还通过阿拉丁计划吸收第三方数据,通过业务手段与药监局等部门合作拿到封闭的数据。但是,尽管网络拥有核心技术和数据矿山,却还没有发挥出最大潜力。网络指数、网络统计等产品算是对数据挖掘的一些初级应用,与Google相比,网络在社交数据、实时数据的收集和由数据流通到数据挖掘转换上有很大潜力,还有很多事情要做。
2月底在北京出差时,写了一篇《搜索引擎的大数据时代》发在虎嗅。创造了零回复的记录。尽管如此,仍然没有打消我对搜索引擎在大数据时代深层次变革的思考。 搜索引擎在大数据时代面临的挑战有:更多的暗网数据;更多的WEB化但是没有结构化的数据;更多的WEB化、结构化但是封闭的数据。这几个挑战使得数据正在远离传统搜索引擎。不过,搜索引擎在大数据上毕竟具备技术沉淀以及优势。
接下来,网络会向企业提供更多的数据和数据服务。前期网络与宝洁、平安等公司合作,为其提供消费者行为分析和挖掘服务,通过数据结论指导企业推出产品,是一种典型的基于大数据的C2B模式。与此类似的还有Netflix的《纸牌屋》美剧,该剧的男主角凯文·史派西和导演大卫·芬奇都是通过对网络数据挖掘之后,根据受欢迎情况选中的。
网络还会利用大数据完成移动互联网进化。核心攻关技术便是深度学习。基于大数据的机器学习将改善多媒体搜索效果和智能搜索,如语音搜索、视觉搜索和自然语言搜索。这将催生移动互联网的革命性产品的出现。尽管网络已经出发,其在大数据上可做的事情还有很多。
在数据收集方面,网络需要聚合更多高价值的交易、社交和实时数据。例如加强自己贴吧知道的社交能力、尽快让地图服务与O2O结合进而掌握交易数据,以及推进移动App、穿戴式设备等数据收集系统。
在数据处理技术上,网络成立深度学习研究院加强自己在人工智能领域的探索,在多媒体和中文自然语言处理领域已经有一些进展;云存储、云计算的基础设施建设也在逐步完善。但深度学习仍然是一个巨大的挑战,网络等探索者还有很多待解问题,如:无监督式学习、立体图像识别。
在数据变现方面,网络需将数据挖掘能力、数据内容聚合和提取等形成标准化的服务和产品,进而开拓大数据领域的企业和开发者市场。而不仅仅是颇为个性化、定制化地为大型企业提供解决。
网络的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。在技术人才方面网络是聚集国内最多大数据相关领域顶尖人才的公司。听说网络前段时间花五千万挖了数据挖掘、自然语言处理、深度学习领域的十来位大牛,包括一些学者和教授。例如Facebook科学家徐伟。
在挖人上,舍得花钱不够,还得用心。对于真正的大牛来说,钱只是一个影响因素。能否实现自己的梦想,公司的资源能否帮助自己的研究至关重要。徐伟在回国前就曾问过其他从硅谷回国工程师的意见,得到答案是积极的,最终促成他作出决定。
总体来看,网络拥有大数据也具备大数据挖掘的能力,并且正在进行积极地准备和探索。在加强面向未来的研究和人才布局的同时,也注重实用性的技术产出。
二、腾讯:数据为产品所用,自产自销
微创新提出者金错刀有个关于腾讯的故事。 1999年腾讯公司刚刚成立不久,天使投资人刘晓松决定向其注资的一个主要原因就是因为他发现,“当时虽然他们的公司还很小,但已经有用户运营的理念,后台对于用户的每一个动作都有记录和分析。”而另一个投资人却因为马化腾在公司很小时就花钱在数据上表示不满。此后腾讯的产品生产及运营、腾讯游戏的崛起都离不开对数据的重视。
腾讯拥有社交大数据,在企鹅帝国完成数据的制造、流通、消费和挖掘。 腾讯大数据目前释放价值更多是改进产品。据腾讯Q1财报,增值服务占总收入的78.7%;电子商务业务占14.1%;网络广告收入占6.3%。从广告收入比例可以看出腾讯的大数据在精准营销领域暂时还未大量释放出价值。与其产品线对应的GMAIL、Google+的Google以及社交巨头Facebook则通过广告赚得盆满钵满。
在笔者看来,腾讯的思路主要是补齐产品,注重QZONE、微信、电商等产品的后端数据打通。例如最近腾讯微博利用“大数据技术”实现好友关系自动分组、低质量信息自动过滤、优质信息分类阅读等智能化功能。明显的用数据改进产品的思路。 那么如果腾讯要深入大数据挖掘缺少什么呢?笔者认为其只需马化腾“摁下启动按钮”。数据已经准备好了,就差模式,也就是找到需求或者能更深层次驱动大数据利用的产品,而不是用大数据改进自己的产品。腾讯还在观望,等其他人去试错验证出一套模式或者产品后,自己可以“站在巨人肩上”。这是腾讯的典型思维。
在人才方面,腾讯很早便开始重金挖人。尤其是2010年在Google宣布退出中国后,Google图片搜索创始人朱会灿、Google中国工程研究院副院长颜伟鹏、Google中日韩文搜索算法的主要设计者,《浪潮之巅》及《数学之美》作者吴军相继加入腾讯。搜搜花了很多钱,但被认定为一款无法承载腾讯重托的产品,最后这些大牛都走了。大都回Google了。
腾讯在大数据领域也缺少技术带头人。其对公关也不重视。技术大牛很少出来做报告,更不会向网络、阿里那样主动包装宣传技术大牛。其技术虽然低调,但执行力很强。据腾讯的程序员朋友说封闭开发、集体加班是常有的事情。但配套的重金激励也能跟上。重金之下必有勇夫、腾讯用制度保障技术产出。另外腾讯在高校合作领先一步,在2010年便与清华大学合作成立了清华腾讯联合实验室。这么看腾讯的技术人才这块似乎有短板。会不会到时候马化腾按下启动按钮,发现没数据挖掘能力呢?不会,腾讯搞不定数据挖掘,到时候依然可以挖到大牛,甚至读论文来搞定这事儿。数据挖掘已较为成熟。数据挖掘实际是数据库、统计学、机器学习三个领域的融合。在学术界已经发展多年。不过自然语言识别和深度学习等方面要赶上网络,就难了。除非将网络的数据和众大牛一起倒腾过来。
总体来看,腾讯目前的大数据策略是先将产品补全,产品后台数据打通,形成稳定生态圈。本阶段先利用大数据挖掘改进自己的产品。后期有成熟的模式合适的产品,则利用自家的社交及关系数据时,开展对大数据的进一步挖掘。
三、阿里巴巴:坐拥金数据,尝试做面向未来的数据集市
阿里巴巴B2B出身,在外贸蓬勃的大环境下,依靠服务中小企业发家。淘宝、支付宝等toC的产品出生前,阿里并不依赖也不擅长技术。业界普遍认为阿里没有技术基因。直到淘宝、支付宝以及天猫三个产品后,对海量用户大并发量交易、海量货架数据的管理、安全性等方面的严苛要求,阿里完成进化,在电商技术上取得不菲的成绩。在一段时期阿里仍然浪费了手里掌握的大量数据。这些数据还是“最值钱”的金数据。
数据挖掘无非是从原始数据提取价值。阿里现有的数据产品例如数据魔方、量词统计、推荐系统、排行榜以及时光倒流相对来说是比较简单的BI(商业智能),没到大数据的阶段。“大数据”浪潮袭来,阿里提出“数据、金融和平台”战略。前所未有地重视起对数据的收集、挖掘和共享。马云在“退居”前动不动都对外提“数据”。有位阿里朋友甚至开玩笑说,马云英文名可以从Jack Ma改为Data Ma。阿里现CEO陆兆禧曾做过CDO,首席数据官。为了用数据来驱动阿里电商帝国,阿里还成立了横跨各大事业部的“数据委员会”。
阿里的各项投资案也显示其整合、利用和完善数据的野心:新浪微博的社交及媒体数据、高德的地图数据和线下数据以及友盟的移动应用数据,都是其数据及平台战略的一部分。数据战略正在首席人工智能官(CBO)车品觉领头下逐步落地,王坚的云为其提供基础设施、基础技术支撑。
就在马云退休之后,王坚对外透露其跟马云开玩笑说的一句话:阿里巴巴对数据的理解深度,不会超过苏宁对电子商务的理解。估计马云不一定认同他这话。马云对大数据已经有着自己的理解和考量。马云曾经说过其对大数据的思考。大致意思是:现在从信息时代进入数据时代了。区别是信息时代更多的是精英玩的游戏。我比别人聪明,我能提取出信息出来;数据时代,别人比我聪明,将数据开放给更聪明的人处理,数据即资产,分析即服务。
计算机发展的过程是从象牙塔、到平民到草根。大数据也是这样,一开始在象牙塔阶段,少数精英公司才能玩;但到后面只要有数据就有价值。数据也有所有权,产生数据、流通数据、挖掘数据的都会获得相应的价值。而阿里擅长的便是“建立市场”,建立一个数据交易市场。届时任何个人和企业都可以将数据和挖掘服务拿上去,交易。初期阿里会将自己珍藏的电商和信用数据逐步放到上面。 有数据的人,拿上去卖,或者让别人分析,分析即服务。没有数据的人,即可以去买,也可以去帮别人挖掘,做矿工。
阿里并不是技术驱动,而是业务驱动的。因此在技术层面我们看到,基于前面提到的阿里大数据思路,其技术重心主要在系统层面。阿里拥有LVS(Linux Virtual Server,Linux虚拟服务器)开源软件创始人章文嵩,Linux Kernal、文件系统、大牛DBA等领域的大牛。从人才布局可以看到阿里擅长的技术领域,体现在对于并发访问、电信级别的电商业务的支撑方面的得心应手。在去年双十一期间,支撑了单日过亿的订单量。铁道部奇葩网12306在日均40万时已经不行了。
总体来看,阿里更多是在搭建数据的流通、收集和分享的底层架构。自己并不擅长似乎也不会着重来做数据挖掘的活儿。而是将自己擅长的“交易”生意扩展到数据。让天下没有难做的“数据生意”。
总结一下
移动互联网浪潮下,现实世界正在加速数字化,每个人,每个物体、每件事情、每一个时间节点,都在向网上映射。空间和时间两个维度的联网,使得数字世界正在接近一步步模拟现实世界。历史、现在和未来都会映射到网上。对大数据的挖掘正是对世界的二次发现和感知。BAT三巨头已经出发。
『肆』 保险业三渠道让大数据红利变现
保险业三渠道让大数据红利变现
大数据时代,数据的价值究竟体现在哪里?保险公司正在用自己的探索给出答案。
据了解,泰康人寿、新华电商等,已率先开启与以BAT(网络、阿里、腾讯)为首的互联网巨头公司的数据合作,最普遍的就是将已有的保险客户数据与互联网公司的大数据进行匹配,完善保险客户的画像。同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
经过这些尝试,保险电商公司进行了更为有的放矢的后续操作,并初步尝到了“甜头”,不仅在营销环节,也在风控环节上。这些成果已包括,精准营销让广告投放的点击率提高360%以上,发现客户的赔付率与其芝麻信用呈现负相关关系,甚至建立骗保风险预估模型。
这仅是开始,新华电商副总裁杨亿认为,大数据将再造保险业价值链,涵盖从产品研发到营销、到理赔管理、再到资产管理的几乎全部环节。
数据与数据融合
互联网创新业务在业内处于领先地位的泰康人寿,对数据有明确定位,其董事长陈东升在2011年就提出“让数据产生红利”的方向。对于大数据,泰康总裁刘经纶认为主要有四大特征:首先是数据体量巨大,第二是数据类型繁多,第三是价值密度偏低,第四是处理的速度更快。
传统保险模式运作下,保险公司评估消费者的风险因素只有性别、年龄等简单维度,这也导致部分保险产品定价保守,且产品同质化。而在大数据时代,风险特征的描述数据极大丰富,保险公司可以通过大数据摸索更全面的风险特征,产品细分和个性化设计成为可能,并精细化风险管理和成本管控。
保险公司对于数据有本能的诉求,但简单获取数据违背商业原则,因此对数据的利用一般并不来自直接共享,而是与拥有用户大数据的互联网巨头公司之间进行数据合作,这在业内已经有了典型。
泰康人寿创新事业部业务发展部总经理毕海在今年6月份举行的第二届互联网大数据与精算创新论坛上表示,正在加深与腾讯、阿里等互联网巨头进行数据方面的合作。
近日也从新华保险的全资电商子公司新华世纪电子商务有限公司(下称“新华电商”)了解到,其正在与网络大数据合作;“大数据工场”是新华电商的三大定位之一。
同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
就数据合作而言,保险业与互联网公司,前者以客户获取、客户维护、客户风险评估为核心诉求,而后者的大数据在用户理解和用户洞察方面有核心优势,双方的业务结合点贯穿从营销到产品研发、再到理赔管理的全流程。
“引流”效果明显
在营销阶段,通过大数据方案,保险电商的交叉销售准确率得到提升。
通过与拥有海量客户社交数据及交易数据的互联网巨头进行大数据合作,泰康人寿的互联网创新产品正在朝精准定价的方向迈进,其从多维的甚至相对混乱的数据中进行筛查,决定保险产品是不是展现在用户面前,也就是实现精准营销。
做到这步很初级,互联网用户可能多少也都已有体会,经常在浏览网页时被推动自己关心或感兴趣的产品,但这点已很重要。
大数据+精准营销,已经被新华电商的一个案例证明,非常有效;至少在“引流”的作用上,精准营销有明显作用。毕竟,互联网业务关注的“流量”、“频率”、“价值的转换”三大要素中,“流量”为首。
已与网络大数据进行合作的新华电商,通过这种合作将保险客户的数据维度进一步丰富,让客户更立体,进一步确定出是谁在买保险,在买哪类保险,他们有什么特征。而事实也证明,这样的尝试已经初步体现出积极效益。
新华电商副总裁杨亿在日前召开的网络世界2015大会上介绍,其在和某大型保险公司的合作中,运用相关模型挖掘成功购买保险产品的高价值客户,分析高价值客户的客群特征,包括基本用户画像和上网行为等,并依此在全网扩充目标客群,最后做在线精准营销的广告投放。上线后的真实效果是,实验组广告点击率比对照组提升了361%。
杨亿称,这说明向同样规模的人群展示广告,经过大数据+精准营销,可以找到更多真正对保险感兴趣的目标客户,促成更多点击与转化。
发挥征信作用
大数据给保险电商的“甜头”没有止步于营销环节。对于以风控为核心竞争力的保险业来说,在理赔管理环节中,如何进一步发挥大数据价值也是重要课题。目前的尝试结果表明,在理赔管理中,大数据可以发挥保险征信的作用。
新华电商将网络对用户的大数据画像和新华保险的真实拒保数据进行融合,通过进行黑名单过滤、重大风险识别以及虚假信息挖掘,建立骗保风险预估模型,提升公司整体业务风险管理能力。
再比如,泰康既有的与阿里数据合作的一个结果表明,对客户的赔付率与其芝麻信用负相关。因此,具有明确数值的芝麻信用可以为其定义客户风险特征提供重要参考。
不仅如此,展望未来,杨亿称,大数据将再造保险价值链。
除了将对除了前述的营销阶段、理赔管理环节产生影响之外,其还将影响到产品研发和资产管理等重要环节。比如,在产品开发阶段,大数据助于预测出险概率、优化定价体系、并采集健康数据用于寿险价值链。
以上是小编为大家分享的关于保险业三渠道让大数据红利变现的相关内容,更多信息可以关注环球青藤分享更多干货
『伍』 了解下数据的平台都有哪些呢谢了
现在的数据平台有很多的,基本上每一个互联网金融公司,都有自己的数据平台。
『陆』 百度大数据主要来源,数据源合作伙伴有哪些
主要来源当然是自己的数据库了,网络那么多的用户,根据用户分析出结果,然后展现在人们眼前,例如网络指数,网络统计等等。柠檬学院大数据。
『柒』 开启券商大数据时代的先河
开启券商大数据时代的先河
目前大多数券商的互联网金融思路主要停留在平台对接,通过流量导入,实现销售和服务的创新,大数据应用还没有大规模启用。国金证券作为第一家全面触网、第一家推出互联网产品的上市券商,抢占了互联网券商的先发优势,本次又在业内第一个牵手网络大数据,开启了券商大数据时代的先河。本次国金与网络签署的是排他性合作协议,国金在大数据应用的先发优势被锁定。
2、大数据应用对证券行业意义非凡。
一方面券商可以通过海量数据的实时分析和后台分析,分析挖掘客户的交易行为、交易心理、交易数据等,实现精准营销、差异化风控,提升客户体验和黏性,这是大数据技术的初级应用;另一方面,通过大数据分析券商直接参与到投资策略和相关产品的开发中来,对传统投资模式形成互补,实现投资策略和产品研发模式的创新,这是大数据技术的高级应用。国金本次对大数据的应用偏于后者。
3、国金首推“大数据+人工智能”概念产品具有很大想象空间。
目前国内部分基金公司已经推出一系列大数据概念基金,通过与BAT巨头合作取得大数据接口开发相关产品,今年7月份东方证券资管与京东合作发行了第一只券商大数据基金。国金与网络合作运用大数据和人工智能技术研发投资策略和相关产品,除了大数据,还增加了人工智能技术概念,旨在利用人工智能更快的速度、更高的精度和更敏捷的反应执行交易,帮助公司更好的进行投资决策和交易执行。
以上是小编为大家分享的关于开启券商大数据时代的先河的相关内容,更多信息可以关注环球青藤分享更多干货
『捌』 大数据引擎的组成结构
网络大数据引擎包括开放云、数据工厂和网络大脑三个核心组件。网络将通过平台化和接口化的方式,对外开放其大数据存储、分析和智能化处理等核心能力,这也是全球首个开放大数据引擎。
据悉,网络的合作机构和传统企业,将能够在线使用网络的大数据架构,处理自身积累的大数据,同时融合网络大数据技术进行挖掘处理,改造传统行业的企业管理、商业模式等环节。
网络大数据引擎将经历逐步开放的过程,采取邀请制和免费模式,与政府、非政府组织、制造、医疗、金融、零售和教育等传统领域率先展开合作。