Ⅰ 大数据挖掘方法有哪些
方法1.Analytic Visualizations(可视化分析)
无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.Data Mining Algorithms(数据挖掘算法)
如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.Predictive Analytic Capabilities(预测分析能力)
数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.semantic engine(语义引擎)
由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.Data Quality and Master Data Management(数据质量和主数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。
关于大数据挖掘方法有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 大数据模型建模方法
以下是常见的大数据模型建模方法:
Ⅲ 大数据挖掘方法有哪些
直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。
间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。
数据挖掘的方法
神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
数据挖掘任务
关联分析
两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
聚类分析
聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。
分类
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
时序模式
时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
偏差分析
在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。
Ⅳ 什么是大数据及预测建模
首先,在回答这个问题之前,我们先了解下预测的定义:预测实际上是一种填补缺失信息的过程,即运用你现在掌握的信息(通常称为数据),生成你尚未掌握的信息。这既包含了对于未来数据的时序预测,也包含了对当前与历史数据的分析判断,是更广义的预测。
关于预测,大致可分为两大类:基于数据挖掘的预测和基于机器学习的预测。
历史上,预测的主流分析方法是使用数据挖掘的一系列技术,而这其中被经常使用的是一种被称为“回归”的统计技术。回归做的是什么?它主要是根据过去发生时间的“平均值”来寻找一种预测。当然,回归也有很多种实现方式,有简单的线性回归,多项式回归,也有多因素的Logistic回归,本质上都是一种曲线的拟合,是不同模型的“条件均值”预测。
基于机器学习的预测
但是,回归分析中,对于历史数据的无偏差预测的渴求,并不能保证未来预测数据的准确度,于是基于机器学习的预测开始走入大众的视野。与回归分析不同,机器学习的预测不追求平均值的准确性,允许偏差,但求减少方差。过去,由于数据和计算能力的匮乏,机器学习的表现不如回归分析来得好。但现在,随着数据体量的不断增长,计算能力的不断提升,使用机器学习和(神经网络)深度学习来做预测效果比其他所有方法表现得都要更好,这也使得我们利用统计学进行预测的方法发生了彻底的转变。
把人工智能与机器学习的最新发展作为传统统计学的延伸与加强这是非常诱人的想法!你会发现,这其实跟观远数据AI+BI核心战略是一致的。因为在AI预测之前,AI所需要的大量数据聚合、清洗工作就已经可以在BI平台上完成,因此从BI延伸到AI变得非常顺畅,后续需考虑的就是如何与业务更有机的结合。
Ⅳ 创建有效的大数据模型的6个技巧
创建有效的大数据模型的6个技巧
数据建模是一门复杂的科学,涉及组织企业的数据以适应业务流程的需求。它需要设计逻辑关系,以便数据可以相互关联,并支持业务。然后将逻辑设计转换成物理模型,该物理模型由存储数据的存储设备、数据库和文件组成。
历史上,企业已经使用像SQL这样的关系数据库技术来开发数据模型,因为它非常适合将数据集密钥和数据类型灵活地链接在一起,以支持业务流程的信息需求。
不幸的是,大数据现在包含了很大比例的管理数据,并不能在关系数据库上运行。它运行在像NoSQL这样的非关系数据库上。这导致人们认为可能不需要大数据模型。
问题是,企业确实需要对大数据进行数据建模。
以下是大数据建模的六个提示:
1.不要试图将传统的建模技术强加于大数据
传统的固定记录数据在其增长中稳定且可预测的,这使得建模相对容易。相比之下,大数据的指数增长是不可预测的,其无数形式和来源也是如此。当网站考虑建模大数据时,建模工作应该集中在构建开放和弹性数据接口上,因为人们永远不知道何时会出现新的数据源或数据形式。这在传统的固定记录数据世界中并不是一个优先事项。
2.设计一个系统,而不是一个模式
在传统的数据领域中,关系数据库模式可以涵盖业务对其信息支持所需的数据之间的大多数关系和链接。大数据并非如此,它可能没有数据库,或者可能使用像NoSQL这样的数据库,它不需要数据库模式。
正因为如此,大数据模型应该建立在系统上,而不是数据库上。大数据模型应包含的系统组件包括业务信息需求、企业治理和安全、用于数据的物理存储、所有类型数据的集成、开放接口,以及处理各种不同数据类型的能力。
3.寻找大数据建模工具
有商业数据建模工具可以支持Hadoop以及像Tableau这样的大数据报告软件。在考虑大数据工具和方法时,IT决策者应该包括为大数据构建数据模型的能力,这是要求之一。
4.关注对企业的业务至关重要的数据
企业每天都会输入大量的数据,而这些大数据大部分是无关紧要的。创建包含所有数据的模型是没有意义的。更好的方法是确定对企业来说至关重要的大数据,并对这些数据进行建模。
5.提供高质量的数据
如果组织专注于开发数据的正确定义和完整的元数据来描述数据来自何处、其目的是什么等等,那么可以对大数据模型产生更好的数据模型和关系。可以更好地支持支持业务的数据模型。
6.寻找数据的关键切入点
当今最常用的大数据载体之一就是地理位置,这取决于企业的业务和行业,还
有其他用户需要的大数据常用密钥。企业越能够识别数据中的这些常用入口点,就越能够设计出支持企业关键信息访问路径的数据模型。
Ⅵ 旅游业大数据建模是什么
大数据采集。
1、大数据采集对大量多元异构旅游大数据高效采集、整合各类异构涉旅数据资源,建立旅游大数据资源库。2、大数据存储、管理和处理通过旅游大数据共享交换技术,建立统一的公共数据共享开发平台,实现智慧旅游与智慧城市的数据共享与交换体系。3、大数据分析和挖掘构建多层次、立体化、可视化、智能化的数据挖掘与深度应用系统,提升旅游管理、服务、营销、保护能智慧能力。4、 大数据呈现和应用提升旅游管理部门和涉旅企业大数据应用,为游客、导游、旅行社、景区、管理部门提供相应的数据应用服务。
Ⅶ 大数据建模过程中的数据处理
数据是建模的基础,也是研究事物发展规律的材料。数据本身的可信度和处理的方式将直接决定模型的天花板在何处。一个太过杂乱的数据,无论用多么精炼的模型都无法解决数据的本质问题,也就造成了模型的效果不理想的效果。这也是我们目前所要攻克的壁垒。但是,目前我们市场对的数据或者科研的数据空携并不是完全杂乱无章的,基本都是有规律可循的,因此,用模型算法去进行科学的分析,可以主观情绪对决策的影响。所以数据是非常重要的一部分。那么,接下来我们就详细说一下数据的处理与分析。
当看到数据的时候,首要做的并不是进行清洗或者特征工程,而是要观察数据所呈现的基本状态,以及进行数据与任务的匹配,这就需要我们之前所提到的业务常识与数据敏感度的能力了,只有通过完整的数据分析,才能够更为精准的做符合需求的特征工程工作。数据的基本特征分析主要从以下几个方面进行:
1. 确定类型 :数据集的类型包括文本,音频,视频,图像,数值等多种形式交织而成,但是传入模型中的都是以数值形式呈现的,所以确定数据的类型,才可以确定用什么方法进行量化处理。
2. 验证可靠度 :由于数据的收集的方式不尽相同,数据来源的斗差伏途径多种多样。所以数据的可信度判断也显得尤为重要。而数据可靠性校验的方法非常多。例如:根据收集途径判断,如果调查问卷也可根据问卷设计的可靠度进行判断,当然转化为数值后也可辅助一些模型进行精细校验等。采用何种方式,取决于获取数据的方式,数据类型以及项目的需求。
3. 样本定义 :需要确定样本对应的每一个特征属性的内容是什么。例如:样本的容量,样本的具体内容,样本所包含的基本信息等。
4. 任务匹配: 在任务分析中我们把项目拆分成了小的子问题,这些问庆亮题有分类,回归,关联关系等。也就是每个问题的所达成的目标是不一样的,那么我们要从数据集中筛选出符合子问题的数据,也就是选好解决问题的原料,很多情况下是靠你的数据敏感度和业务常识进行判断的。
5. 数据集的划分: 由于模型搭建完成之后有一个训练与验证评估的过程,而目前最为简单的一种验证手段就是就是交叉验证,因此我们需要将数据集拆分成训练集和测试集,这一步仅仅确定训练集和测试集的比例关系,例如:70%的数据用于训练,30%的数据用于测试。
数据的清洗是一件非常繁琐且耗费时间的事情,基本可以占到一个工程的30%到50%的时间。并且数据的清洗很难有规律可循,基本上依托于你对数据的基本分析与数据敏感度。当然,当你看的数据够多,数据的清洗的经验也就越多,会为你今后哦搭建模型提供很多遍历,我们这里提供一些常见的清洗的点。
清洗异常数据样本需要考虑到方方面面,通常情况下我们从以下方面:
1.处理格式或者内容错误:
首先,观察时间,日期,数值等是否出现格式不一致,进行修改整理;其次,注意开头,或者中间部分是否存在异常值;最后,看字段和内容是否一致。例如,姓名的内容是男,女。
2. 逻辑错误清洗:
去重:通常我们收集的数据集中有一些数据是重复的,重复的数据会直接影响我们模型的结果,因此需要进行去重操作;
去除或者替换不合理的值:例如年龄突然某一个值是-1,这就属于不合理值,可用正常值进行替换或者去除;
修改矛盾内容:例如身份证号是91年的,年龄35岁,显然不合理,进行修改或者删除。
3. 去除不要的数据: 根据业务需求和业务常识去掉不需要的字段
4. 关联性错误验证: 由于数据来源是多个途径,所以存在一个id,进行不同的数据收集,可通过,id或者姓名进行匹配合并。
该问题主要出现在分类模型中,由于正例与负例之间样本数量差别较大,造成分类结果样本量比较少的类别会大部分分错。因此需要进行数据不平衡处理。常用的处理方法有:向上采样、向下采样、数据权重复制、异常点检测等。