『壹』 BP人工神经网络
人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。
岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。
BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。
BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:
(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。
(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。
(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。
(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。
『贰』 AlphaGo的神奇全靠它,详解人工神经网络!
Alphago在不被看好的情况下,以4比1击败了围棋世界冠军李世石,令其名震天下。随着AlphaGo知名度的不断提高,人们不禁好奇,究竟是什么使得AlphaGo得以战胜人类大脑?AlphaGo的核心依托——人工神经网络。
什么是神经网络?
人工神经网络是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式。
神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
例如,用于手写识别的一个神经网络是被可由一个输入图像的像素被激活的一组输入神经元所定义的。在通过函数(由网络的设计者确定)进行加权和变换之后,这些神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。这样决定了被读取的字。
它的构筑理念是受到人或其他动物神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
人工神经网络是一个能够学习,能够总结归纳的系统,也就是说它能够通过已知数据的实验运用来学习和归纳总结。人工神经网络通过对局部情况的对照比较(而这些比较是基于不同情况下的自动学习和要实际解决问题的复杂性所决定的),它能够推理产生一个可以自动识别的系统。与之不同的基于符号系统下的学习方法,它们也具有推理功能,只是它们是建立在逻辑算法的基础上,也就是说它们之所以能够推理,基础是需要有一个推理算法则的集合。
2AlphaGo的原理回顶部
AlphaGo的原理
首先,AlphaGo同优秀的选手进行了150000场比赛,通过人工神经网络找到这些比赛的模式。然后通过总结,它会预测选手在任何位置高概率进行的一切可能。AlphaGo的设计师通过让其反复的和早期版本的自己对战来提高神经网络,使其逐步提高获胜的机会。
从广义上讲,神经网络是一个非常复杂的数学模型,通过对其高达数百万参数的调整来改变的它的行为。神经网络学习的意思是,电脑一直持续对其参数进行微小的调整,来尝试使其不断进行微小的改进。在学习的第一阶段,神经网络提高模仿选手下棋的概率。在第二阶段,它增加自我发挥,赢得比赛的概率。反复对极其复杂的功能进行微小的调整,听起来十分疯狂,但是如果有足够长的时间,足够快的计算能力,非常好的网络实施起来并不苦难。并且这些调整都是自动进行的。
经过这两个阶段的训练,神经网络就可以同围棋业余爱好者下一盘不错的棋了。但对于职业来讲,它还有很长的路要走。在某种意义上,它并不思考每一手之后的几步棋,而是通过对未来结果的推算来决定下在哪里。为了达到职业级别,AlphaGp需要一种新的估算方法。
为了克服这一障碍,研究人员采取的办法是让它反复的和自己进行对战,以此来使其不断其对于胜利的估算能力。尽可能的提高每一步的获胜概率。(在实践中,AlphaGo对这个想法进行了稍微复杂的调整。)然后,AlphaGo再结合多线程来使用这一方法进行下棋。
我们可以看到,AlphaGo的评估系统并没有基于太多的围棋知识,通过分析现有的无数场比赛的棋谱,以及无数次的自我对战练习,AlphaGo的神经网络进行了数以十亿计的微小调整,即便每次只是一个很小的增量改进。这些调整帮助AlphaGp建立了一个估值系统,这和那些出色围棋选手的直觉相似,对于棋盘上的每一步棋都了如指掌。
此外AlphaGo也使用搜索和优化的思想,再加上神经网络的学习功能,这两者有助于找到棋盘上更好的位置。这也是目前AlphaGo能够高水平发挥的原因。
3神经网络的延伸和限制回顶部
神经网络的延伸和限制
神经网络的这种能力也可以被用在其他方面,比如让神经网络学习一种艺术风格,然后再将这种风格应用到其他图像上。这种想法很简单:首先让神经网络接触到大量的图像,然后来确认这些图像的风格,接着将新的图像带入这种风格。
这虽然不是伟大的艺术,但它仍然是一个显著的利用神经网络来捕捉直觉并且应用在其他地方的例子。
在过去的几年中,神经网络在许多领域被用来捕捉直觉和模式识别。许多项目使用神经这些网络,涉及的任务如识别艺术风格或好的视频游戏的发展战略。但也有非常不同的网络模拟的直觉惊人的例子,比如语音和自然语言。
由于这种多样性,我看到AlphaGo本身不是一个革命性的突破,而是作为一个极其重要的发展前沿:建立系统,可以捕捉的直觉和学会识别模式的能力。此前计算机科学家们已经做了几十年,没有取得长足的进展。但现在,神经网络的成功已经大大扩大,我们可以利用电脑攻击范围内的潜在问题。
事实上,目前现有的神经网络的理解能力是非常差的。神经网络很容易被愚弄。用神经网络识别图像是一个不错的手段。但是实验证明,通过对图像进行细微的改动,就可以愚弄图像。例如,下面的图像左边的图是原始图,研究人员对中间的图像进行了微小的调整后,神经网络就无法区分了,就将原图显示了出来。
另一个限制是,现有的系统往往需要许多模型来学习。例如,AlphaGo从150000场对战来学习。这是一个很庞大额度数字!很多情况下,显然无法提供如此庞大的模型案例。
『叁』 人工神经网络有什么应用条件
人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、预测以及模糊控制等功能。是处理非线性系统的有力工具。
它是物流合作伙伴选择方法中合作伙伴选择的神经网络算法的另一种名称。它是20世界80年代后迅速发展的一门新兴学科,ANN可以模拟人脑的某些智能行为,如知觉,灵感和形象思维等,具有自学性,自适应和非线性动态处理等特征。
将ANN应用于供应链管理(SCM)环境下合作合办的综合评价选择,意在建立更加接近于人类思维模式的定性与定量相结合的综合评价选择模型。通过对给定样本模式的学习,获取评价专家的知识,经验,主管判断及对目标重要性的倾向,当对合作伙伴作出综合评价时,该方法可再现评价专家的经验,知识和直觉思维,从而实现了定性分析与定量分析的有效结合,也可以较好的保证合作伙伴综合评价结果的客观性。
在选定评价指标组合的基础上,对评价指标作出评价,得到评价值后,因各指标间没有统一的度量标准,难以进行直接的分析和比较,也不利于输入神经网络计算。因此,在用神经网络进行综合评价之前,应首先将输入的评价值通过隶属函数的作用转换为(0,1]之间的值,即对评价值进行标准无纲量化,并作为神经网络的输入,以使ANN可以处理定量和定性指标。
『肆』 请介绍一下人工神经网络,和应用
一.一些基本常识和原理
[什么叫神经网络?]
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
[人工神经网络的工作原理]
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================
关于一个神经网络模拟程序的下载
人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者关于此程序的说明:
从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!
=================================================
人工神经网络论坛
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(旧版,枫舞推荐)
国际神经网络学会(INNS)(英文)
http://www.inns.org/
欧洲神经网络学会(ENNS)(英文)
http://www.snn.kun.nl/enns/
亚太神经网络学会(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神经网络学会(JNNS)(日文)
http://www.jnns.org
国际电气工程师协会神经网络分会
http://www.ieee-nns.org/
研学论坛神经网络
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智能研究者俱乐部
http://www.souwu.com/
2nsoft人工神经网络中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
推荐部分书籍:
人工神经网络技术入门讲稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神经网络FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
数字神经网络系统(电子图书)
http://www.youngfan.com/nn/nnbook/director.htm
神经网络导论(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
一份很有参考价值的讲座
<前向网络的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.
=========================================================
已经努力的在给你提供条件资源哦~~
『伍』 人工神经网络可以解决哪些问题
信息领域中的应用:信息处理、模式识别、数据压缩等。
自动化领域:系统辨识、神经控制器、智能检测等。
工程领域:汽车工程、军事工程、化学工程、水利工程等。
在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。
经济领域的应用:市场价格预测、风险评估等。
此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。
『陆』 人工神经网络的作用
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
中文名
人工神经网络
外文名
artificial neural network
别称
ANN
应用学科
人工智能
适用领域范围
模式分类
精品荐读
“蠢萌”的神经网络
作者:牛油果进化论
快速
导航
基本特征
发展历史
网络模型
学习类型
分析方法
特点优点
研究方向
发展趋势
应用分析
神经元
如图所示
a1~an为输入向量的各个分量
w1~wn为神经元各个突触的权值
b为偏置
f为传递函数,通常为非线性函数。以下默认为hardlim()
t为神经元输出
数学表示 t=f(WA'+b)
W为权向量
A为输入向量,A'为A向量的转置
b为偏置
f为传递函数
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程: Wp+b=0
W权向量
b偏置
p超平面上的向量
基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:
(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
人工神经网络
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性
『柒』 人工神经网络的应用分析
经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。下面介绍神经网络在一些领域中的应用现状。 在处理许多问题中,信息来源既不完整,又包含假象,决策规则有时相互矛盾,有时无章可循,这给传统的信息处理方式带来了很大的困难,而神经网络却能很好的处理这些问题,并给出合理的识别与判断。
1.信息处理
现代信息处理要解决的问题是很复杂的,人工神经网络具有模仿或代替与人的思维有关的功能, 可以实现自动诊断、问题求解,解决传统方法所不能或难以解决的问题。人工神经网络系统具有很高的容错性、鲁棒性及自组织性,即使连接线遭到很高程度的破坏, 它仍能处在优化工作状态,这点在军事系统电子设备中得到广泛的应用。现有的智能信息系统有智能仪器、自动跟踪监测仪器系统、自动控制制导系统、自动故障诊断和报警系统等。
2. 模式识别
模式识别是对表征事物或现象的各种形式的信息进行处理和分析,来对事物或现象进行描述、辨认、分类和解释的过程。该技术以贝叶斯概率论和申农的信息论为理论基础,对信息的处理过程更接近人类大脑的逻辑思维过程。现在有两种基本的模式识别方法,即统计模式识别方法和结构模式识别方法。人工神经网络是模式识别中的常用方法,近年来发展起来的人工神经网络模式的识别方法逐渐取代传统的模式识别方法。经过多年的研究和发展,模式识别已成为当前比较先进的技术,被广泛应用到文字识别、语音识别、指纹识别、遥感图像识别、人脸识别、手写体字符的识别、工业故障检测、精确制导等方面。 由于人体和疾病的复杂性、不可预测性,在生物信号与信息的表现形式上、变化规律(自身变化与医学干预后变化)上,对其进行检测与信号表达,获取的数据及信息的分析、决策等诸多方面都存在非常复杂的非线性联系,适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的各个方面,主要应用在生物信号的检测与自动分析,医学专家系统等。
1. 生物信号的检测与分析
大部分医学检测设备都是以连续波形的方式输出数据的,这些波形是诊断的依据。人工神经网络是由大量的简单处理单元连接而成的自适应动力学系统, 具有巨量并行性,分布式存贮,自适应学习的自组织等功能,可以用它来解决生物医学信号分析处理中常规法难以解决或无法解决的问题。神经网络在生物医学信号检测与处理中的应用主要集中在对脑电信号的分析,听觉诱发电位信号的提取、肌电和胃肠电等信号的识别,心电信号的压缩,医学图像的识别和处理等。
2. 医学专家系统
传统的专家系统,是把专家的经验和知识以规则的形式存储在计算机中,建立知识库,用逻辑推理的方式进行医疗诊断。但是在实际应用中,随着数据库规模的增大,将导致知识“爆炸”,在知识获取途径中也存在“瓶颈”问题,致使工作效率很低。以非线性并行处理为基础的神经网络为专家系统的研究指明了新的发展方向, 解决了专家系统的以上问题,并提高了知识的推理、自组织、自学习能力,从而神经网络在医学专家系统中得到广泛的应用和发展。在麻醉与危重医学等相关领域的研究中,涉及到多生理变量的分析与预测,在临床数据中存在着一些尚未发现或无确切证据的关系与现象,信号的处理,干扰信号的自动区分检测,各种临床状况的预测等,都可以应用到人工神经网络技术。 1. 市场价格预测
对商品价格变动的分析,可归结为对影响市场供求关系的诸多因素的综合分析。传统的统计经济学方法因其固有的局限性,难以对价格变动做出科学的预测,而人工神经网络容易处理不完整的、模糊不确定或规律性不明显的数据,所以用人工神经网络进行价格预测是有着传统方法无法相比的优势。从市场价格的确定机制出发,依据影响商品价格的家庭户数、人均可支配收入、贷款利率、城市化水平等复杂、多变的因素,建立较为准确可靠的模型。该模型可以对商品价格的变动趋势进行科学预测,并得到准确客观的评价结果。
2. 风险评估
风险是指在从事某项特定活动的过程中,因其存在的不确定性而产生的经济或财务的损失、自然破坏或损伤的可能性。防范风险的最佳办法就是事先对风险做出科学的预测和评估。应用人工神经网络的预测思想是根据具体现实的风险来源, 构造出适合实际情况的信用风险模型的结构和算法,得到风险评价系数,然后确定实际问题的解决方案。利用该模型进行实证分析能够弥补主观评估的不足,可以取得满意效果。 从神经网络模型的形成开始,它就与心理学就有着密不可分的联系。神经网络抽象于神经元的信息处理功能,神经网络的训练则反映了感觉、记忆、学习等认知过程。人们通过不断地研究, 变化着人工神经网络的结构模型和学习规则,从不同角度探讨着神经网络的认知功能,为其在心理学的研究中奠定了坚实的基础。近年来,人工神经网络模型已经成为探讨社会认知、记忆、学习等高级心理过程机制的不可或缺的工具。人工神经网络模型还可以对脑损伤病人的认知缺陷进行研究,对传统的认知定位机制提出了挑战。
虽然人工神经网络已经取得了一定的进步,但是还存在许多缺陷,例如:应用的面不够宽阔、结果不够精确;现有模型算法的训练速度不够高;算法的集成度不够高;同时我们希望在理论上寻找新的突破点, 建立新的通用模型和算法。需进一步对生物神经元系统进行研究,不断丰富人们对人脑神经的认识。
『捌』 人工神经网络会秒杀人类哪6大领域
目前,人工神经网络可以在计算机视觉、自然语言处理、语音识别、机器翻译、游戏、预测等领域取得优秀的效果,但是并不意味着它会秒杀人类。人工智能技术可以帮助人们更好地完成工作,但是人类仍然是必要的,因为人类拥有判断力、智慧和创造力等特质,可以帮助人工智能更好地发挥其优势。