导航:首页 > 网络数据 > 大数据大学教材

大数据大学教材

发布时间:2023-06-05 13:52:46

A. 大数据入门书籍有哪些

首先从最基础的开化,编程,java入门,linux入门,mysql等课程的入门到精通的学内习,然容后下一步在开始大数据的学习。北京大 讲台大数据培训从最基础的java,linux,mysql开始学习,zhuce就可以在线听课了。

B. 推荐几本学习大数据和人工智能的书籍,网站吧,谢谢大牛

大数据是人工智能的分支。如果你想总览一下,先看人工智能,宏观了解下比较好。罗素的人工智能可以看看,这是大学教材。haiyinwangyuquan,这个公共号关注下,点击右下角王煜全-思维导图,里面有人工智能行业全视野,可以看看。

C. 大学专业:大数据(云计算方向)应该看什么书

大数据的基础知识,科普类的,自己去买本书就行了,大数据时代这样的书很多介版绍权的大数据的。另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。当然一些大数据的一些基础知识,比如java和hadoop等等,这个基本得自学。大学里面最接近这些的也就是计算机类专业。云计算的话,需要学习的知识应该包括但不限于:1、网络通信知识,包括互联网基础建设相关的所有知识;2、虚拟化知识,应该了解硬件运行原理以及虚拟化实现技术;3、数据库技术;4、网络存储技术;5、网络信息安全技术,最起码得明白什么是iso 17799;6、电子商务;7、容灾及备份技术;8、JAVA编程技术;9、分布式系统架构。。。

D. 市面上大数据的书不少,如果只挑一本,哪本值得推荐

市场上大数据的说不少,但是你要挑一本的话,其实我还是觉得你在网络上选择一些自己可以公开的数据。因为每个人需要的每个程度的书是不一样的,你可以选择购买一些书的电子版本。电子版本反而比书籍会更好一点。

E. 大学大数据专业有什么课程

大学大数据专业的课程有基础课程、必修课和选修课三种,其具体细分课程如下:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、非结构化大数据分析。

(5)大数据大学教材扩展阅读

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

大数据专业的含义:

大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的`解决办法的专业。

“大数据”是指般的软件工具难以捕捉、管理和分析的大容量数据。“大数据”之“大”,并不仅仅在于“容量之大”,更大的意义在于:通过对海量数据的交换、整合和分析,发现新的知识,创造新的价值,带来“大知识”、“大科技”、“大利润”和“大发展”。“大数据”能帮助企业找到一一个个难题的答案,给企业带来前所未有的商业价值与机会。大数据同时也给企业的IIT系统提出了巨大的挑战。通过不同行业的“大数据”应用状况,我们能够看到企业如何使用大数据和云计算技术,解决他们的难题,灵活、快速、高效地响应瞬息万变的市场需求。

F. 想从零开始自学大数据,请问有哪些书籍推荐

在人人高呼的大数据时代,你是想继续做一个月薪6K+的码农,还是想要翻身学习成为炙手可热名企疯抢的大数据工程师呢?
随着互联网技术的发展,大数据行业前景非常被看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?今天就给大家分享几本那些不容错过的大数据书籍。

1、《数据挖掘》
这是一本关于数据挖掘领域的综合概述,本书前版曾被KDnuggets的读者评选为最受欢迎的数据挖掘专著,是一本可读性极佳的教材。它从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和最新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。
2、《Big Data》
这是一本在大数据的背景下,描述关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题的书。这本书提供了令人耳目一新的全面解决方案。但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。
3、《Mining of Massive Datasets》
这是一本书是关于数据挖掘的。但是本书主要关注极大规模数据的挖掘,也就是说这些数据大到无法在内存中存放。由于重点强调数据的规模,所以本书的例子大都来自Web本身或者Web上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。

G. 有什么比较好的大数据入门的书推荐

1. 《大数据分析:点“数”成金》
你现在正坐在一座金矿上,这些金子或被埋于备份,或正藏在你眼前的数据集里,他们是提升公司效益、拓展新的商业关系、制定更直观决策的秘诀所在,足以使你的企业更上一层楼。你将明白如何利用、分析和驾驭数据来获得丰厚回报。作者Frank Ohlhorst厚积数十年的技术经验写了此书。该书介绍了如何将大数据应用于各行各业,你将了解到如何对数据进行挖掘,怎样从数据中揭示趋势并转化为竞争策略及提取价值的方法。这些更有意思也是更有效的方法能够提升企业的智能化水平,将有助于企业解决实际问题,提升利润空间,提高生产率并发现更多的商业机会。
2.《大数据时代》
《大数据时代》是国外大数据系统研究的先河之作,本书作者维克托被誉为”大数据商业应用第一人”,拥有再哈佛大学、牛津大学和新加坡国立大学等多个互联网研究重镇任教经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。该书主要讲了大数据时代的变革、商业变革和管理变革。《大数据时代》认为大数据的核心就是预测。大数据为人类的生活创造了前所未有的可量化的维度。大数据已经成为了新发明和新服务的源泉,而更多的改变正蓄势待发。
3.《云端时代杀手级应用:大数据分析》
《云端时代杀手级应用:大数据分析》分析了什么是大数据、大数据大商机、技术与前瞻三个部分。第一个部分介绍大数据分析的概念,以及企业、政府部门可应用的范畴。什么是大数据分析?与个人与企业有什么关系?将对全球产业造成什么样的冲击?第二部分完整介绍了大数据在各产业的应用实况,为企业及政府部门提供应用的方向。提供了全球各地的实际应用案例,涵盖了零售、金融、政府部门、能源、制造、娱乐等各个行业,充分展示了大数据分析产生的效益。第三部分则简单介绍了大数据分析所需要的技术及未来的发展趋势,为读者提供了应用与研究的方向。
4.《大数据》
本书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例奥巴马建设”前所未有的开放政府“的雄心、公开财务透明的曲折。《数据质量法》背后隐情,全国医改法案的波澜、统一身份证的百年纠结以及云计算、Facebook和推特等社交媒体等等,为您一一讲解数据创新给社会带来的种种变革和挑战。
5.《大数据互联网大规模数据挖掘与分布式处理》。
该书主要讲的是海量数集数据挖掘常用的算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前WEB端应用的许多重要话题等。

H. 大数据专业系列教材,大数据专业应该看什么书

目前,全国高校总数477所“数据科学与大数据技术”专业,累计30所“大数据管理与应用”专业,成功高校总数超过409所。
但由于大数据专业是以软硬件融合、数据科学和大数据技术为特色的新型复合型专业,许多高校在专业建设和人才培养方面面临挑战,教材选用成为许多高校的头疼问题。
在深入调研以上情况后,清华大学博士、中国大数据应用联盟人工智能专家委员会主任、云创大数据总裁刘鹏教授在业内很早就开始着手策划,联合国内多所高校从事一线教育科研任务的专业教师相继担任主编,《高级大数据人才培养丛书》
在大数据教学中,本科院校实践教学注重系统性,偏重新技术的应用,且对工程实践能力要求较高。
为此,刘鹏教授带领团队花了一年的时间编写了《高级大数据人才培养丛书》( 《云计算》、《大数据》、《深度学习》、《大数据库》、《数据挖掘》、0755-0755 )
其中,《Python程序设计》多年来一直处于我国计算机图书被引量的前列,据网络对微信公众号( cnkipj ) 《大数据可视化》的评价,2010年至2014年《大数据实验手册》
《大数据应用人才培养系列教材》( 《虚拟化与容器》、《云计算》、《【工学】高被引图书前三甲,你读过吗?》、《云计算》、《大数据导论》、0755-79055- )
内容从简单到复杂,既遵循理论到实践的学习过程,也遵循系统而广的原则。
清华大学出版社王编辑说:“刘鹏教授的这个教材选题很独特,考虑到未来高职高专大数据人才的就业需求,他选择了一个非常有特色的选题。

从业内高校的大数据教材来看,理论知识过于复杂高深,与教学实际不契合,或者实践部分过于简略,学生学完往往也会感到一头雾水。
《高级大数据人才培养丛书》和《大数据应用人才培养系列教材》大相径庭,符合教师教育实际和学生实践实验,一经推出,就受到高校的广泛关注和采用。
师生们普遍对它给予了很高弯梁的评价。 ——不仅与教学实际相符,理论部分和实践部分比例分配合理,大量实验提高了学生动手能力,大数据学习不再是“纸上谈兵”。
大数据教育特别注重实践,除了两套教材外,针对目前大数据教育实践教学中师资力量不足、实验环境薄弱、实验数据缺乏等问题,刘鹏教授带领云创大数据技术团队,与备受高中老师好评的教师教育和教材进行了配套
师资培训
三年来,云创大数据(工信部教育与考试中心授权的“工业和信息化人才培养工程训练基地”)连续举办了几十期大数据/人工智能实战培训班,培训班全部采用实习方式,大大提高了参训老师的实战能力,各期训练有求必应
全国2000多所亏枣高校的5000多名老师能够参加并接受培训,老师们普遍反馈,对未来的教育和人才培养方面有很大启发,云创举办的大数据实战培训班也在教育领域引起了强烈反响。
此外,云创大数据优秀讲师和技术人员还将定期或不定期赴合作高校开展包括教育、实验人员教育指导在内的培训服务。
2016年12月-2017年1月,多次举办高中(高职)大数据教师免费培训班
2017年1月,百所高中老师齐聚二期高中(高职)大数据教师免埋空运费培训班
2017年4月,全国千所高校大数据教师免费讲习班在南京举行
2018年5月,2018信息技术新工科产学研联盟大数据技术师资培训班举办
2018年9-10月,第二届全国高校大数据人工智能教师实战免费培训班举办三期
2019年1月,2019年全国高校大数据人工智能师资培训实战免费培训班连续举办两期
2019年3月,2019大数据人工智能师资培训班在南京举办
2019年6月,2019云计算免费培训班在南京举办
2019年7月,2019年全国高校大数据人工智能师资培训实战免费培训班(第三期)举办
云创大数据持续的大数据实战训练,一方面为高中老师提供了与专家讨论、同事交流、向实战经验丰富的讲师学习的机会,另一方面也一步步突破了Hadoop、Spark、Python语言、Scala等多个大数据实验
大数据实验室
大数据实验室建设方案基于云提供的大数据实验一体化计算机和大数据实验平台建设,采用Docker容器技术,为用户提供大数据实验服务,实现大量用户同时在线实验避免相互干扰,同时提供实验手册、课程资源、教学视频、考试系统等,方便高校师生在平台上开展大数据教学和实验。
今年5月,大数据实验平台再次迎来更新,改版用户界面,优化系统资源使用,增加实验内容,丰富实验形式,扩充题库,完善教材与实验内容的映射,增录实验操作视频集成了商业智能实践教学子系统,基础镜像速度也得到了极大优化,一键营造环境只需十几秒钟。
目前,大数据实验平台已更新为400个大数据实验。
操作简便,实战效果显著,大数据实验平台依托贵州大学、西北工业大学、山东理工大学、郑州大学、河南农业大学、成都理工大学、西南大学、重庆师范大学、重庆工商大学、陕西师范大学、宁夏大学、南京财经大学、金陵科技学院、天津农学院、郑州升达经贸管理学院
值得一提的是,郑州升达经贸管理学院作为民办三大高校,自天骄数据实验平台落地以来,在课堂教学、实验拓展、课程体系建设等诸多方面屡创新成果。
目前,大数据实验室是该校利用率最高的实验室,一直排到周日。
这所学校信息工程学院的计算机科学和软件工程两个专业分别有250名学生和学院其他专业的800多名学生在这个平台上接受了严格的训练。
使用该平台毕业的学生工资水平远远超过普通专业大学毕业生,直接带动了学生就业率和学校影响力的同步提高。
无论是教材体系、师资培训,还是大数据实验室建设,云创大数据都在教育领域稳步发展,拥有雄厚的技术优势和优质资源。
热忱欢迎广大高校、教育机构及各企事业单位与云创业开展多方面交流合作,共同探讨大数据建设相关领域,培养越来越多大数据优秀人才,为行业发展作出贡献。
要获取《高级大数据人才培养丛书》、《大数据应用人才培养系列教材》配套PPT、人工智能人才培养方案大数据、人工智能实验室建设方案大数据、云创大数据合作工作手册等资源,可通过以下方式之一获取
2 .关注“云创大数据( cStor_cn )”,在微信后台回复“PPT”,获取网盘全套资源下载链接

自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/

I. 推荐一本关于大数据,数据分析类似的书籍

1、《Hadoop权威指南》
现在3.1版本刚刚发布,但官方并不推荐在生产环境使用。作为hadoop的入门书籍,从2.x版本开始也不失为良策。
本书从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。刚刚更新的版本中,相比之前的版本增加了介绍YARN , Parquet , Flume, Crunch , Spark的章节,非常适合于Hadoop 初学者。
2、《Learning Spark》
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
3、《Spark机器学习:核心技术与实践》
以实践方式助你掌握Spark机器学习技术。本书采用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。

J. 大数据专业主要课程

1. 大数据学习需要哪些课程

主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计专分析、高属等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等

2. 大数据专业课程有哪些 专业介绍

随着互联网技术的不断发展,当今的时代又被称之为大数据时代。

目前互联网企业对大数据人才需求非常大,培训机构出来的人才也很好找工作,南京课工场最近一批的大数据学员就业就很高,薪资普遍很高。当然,工作好找的前提是你大数据的相关技术要过关哦!

从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。从2019年的秋招情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。

对于当前在读的本科生来说,如果不想读研,那么应该从以下三个方面来提升自身的就业竞争力:

第一:提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。

第二:掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。

第三:重视平台知识的积累。产业互联网时代是平台化时代,所以要想提升就业能力应该重视各种开发平台知识的积累,尤其是与行业领域结合比较紧密的开发平台。实际上,大数据和云计算本身就是平台,所以大数据专业的学生在学习平台开发时也会相对顺利一些。

3. 大数据专业都要学什么课程

大数据专业有很多课程

4. 数据与大数据专业学什么课程

大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

5. 大数据要学哪些课程

大数据存储阶来段:百hbase、hive、sqoop。
大数度据自架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。

6. 大数据的课程都有哪些

大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。

7. 大数据课程都学什么啊

大数据课程学习的内容有6个阶段:
1阶段
JavaSE基础核专心
2阶段
数据库关键技术属
3阶段
大数据基础核心
4阶段
Spark生态体系框架&大数据高薪精选项目
5阶段
Spark生态体系框架&企业无缝对接项目
6阶段
Flink流式数据处理框架
按照顺序学习就可以了,希望你早日学有所成。

8. 大数据专业主要学什么课程

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。


(8)大数据专业主要课程扩展阅读:

大数据岗位:

1、大数据系统架构师

大数据平台搭建、系统设计、基础设施。

技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。

2、大数据系统分析师

面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。

技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。

3、hadoop开发工程师。

解决大数据存储问题。

4、数据分析师

不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

5、数据挖掘工程师

做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。

9. 大数据专业课程有哪些

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

阅读全文

与大数据大学教材相关的资料

热点内容
官方航班app有哪些 浏览:836
jssubstring中文 浏览:463
读取小米路由器文件 浏览:739
win10玩孤岛惊魂4 浏览:844
微信jssdk配置 浏览:89
苹果系统光驱怎么存储文件 浏览:722
把文件夹发送 浏览:681
win7升级到专业版 浏览:282
qq飞车s车排行榜2017 浏览:671
揭示板网站怎么看 浏览:202
ps文件转换为ai文件吗 浏览:695
苹果升级到一半不动了 浏览:715
w7网络图标怎么设置 浏览:773
2016中国app应用创新峰会 浏览:680
用python写聊天程序 浏览:818
安装win10后是英文版 浏览:509
安卓支付宝停止运行怎么办 浏览:214
如何让文件整理的好 浏览:58
电脑评标专家库网站进不去怎么办 浏览:661
word怎么删除所有标点符号 浏览:423

友情链接