⑴ 数据产品经理和普通产品经理的要求有什么不同
你好,数据产品经理和普通产品经理的相同和不同点有这些:
相同点:都是产品经理,都是一个产品的负责人,工作职责基本都是一样的;
不同点:数据产品注重的是数据情况,偏向于数据分析,而普通的产品经理主要负责一个产品,普通的产品经理也有可能负责自己产品的一些数据。
⑵ 京东产品经理的分享基于大数据的购物车营销玩法
如果在购物车中加入人工智能的算法模型,会有什么新的营销方式呢?
线上的购物车的概念源于线下商超的实体购物车,其主要作用是方便消费者在网站上购物,易于商品结算和抉择意向商品。购物车作为商品交易的中转站,全网每天有上亿用户在向购物车内添加中意的商品,顷刻间,就能产生过亿的销售额。
面对如此具大的流量,各家大厂都在惦记这个金矿。以往基于大数据的购物车营销,主要的产品形式为猜你喜欢和为你推荐,两者都是围绕用户的购物行为,用户商品爱好和用户画像属性展开,再经过大数据分析后,系统智能的推荐符合用户口味的商品。但是,这种营销方式是围绕购物车的商品或者用户画像推荐的其他商品,并非是对购物车内商品做营销策略,这种手段略微有点本末倒置了。
下文结合笔者的工作经历,讲述了如何基于购物车内商品,利用AI技术,设计一款购物车营销产品。
一、营销流程
商家端查看加购数据,如加购人数,加购件数,系统自动分析加购这部分人的画像数据,人群可以标签化
商家端根据自身需求,创建不同标签的人群的营销,例如可以选择新客户,老客户,15~25岁的用户群体,提供降价40元的服务
创建活动后,会触达给对应的覆盖人群。
第二天,商家端可以查看对应的营销数据。同时能够对比自然的转化率与促销后的转化率
二、商家端洞察购物车数据
购物车承载了所有的商品信息,包含商品名称,价格,店铺,促销,凑单和优惠券等。在进行大数据分析时,就需要把这些数据精分拆解清洗,提取有价值的部分。购物车的每件商品都可以看成一个实体,可能在不同的地点,不同的时间,有部分人把同一商品加进了购物车。这就说明这些群体是对这件商品感兴趣的,可能会下单,但却差些火候。也有部分人早早的就将商品加进了购物车,但却一直没有下单,临门却不入。 利用大数据技术,则可以把加购人群标签化,对不同标签的人群进行精准的营销策略,在一定程度上,能够提高购物车的转化。
如何进行呢?按照以下步骤:
商家加购数据盘点
产品需要考虑商家端和用户端。首先商家端需要了解自家的产品状况,销售情况,加购数据等,这样才能针对性的做营销策略。
商家端可以看到其店铺内的加购商品的人数,实时的计算某件商品,在多少人的购物车内,实时加购总件数,实时的库存。还能够查询到,这些商品的在未做干预的情况,自然的转化率情况(过去15天内加购该商品的消费者在昨日的转化率)。
列表中的商品按照加购人数从高到低排序,加购的人数越多代表这个商品越受欢迎。对加购人数多的商品进行营销干预,会起到更好的效果。当然,这里会把部分已经下架的,失效的商品自动的剔除掉。
画像部分把汇总所有用户的账户信息,画像纬度,从新客户,性别、消费层级、淘宝等级、地域5个纬度提供。画像将用户进行了标签化,利用这些标签,可以对其进行不同的营销动作。具体的分群策略可以看我的上一篇文章《基于大数据的会员任务营销,该怎么玩?》
商家可以单独对每个商品进行营销,根据自身品牌情况,投放给特定的人群,并进行低价,促销干预。
根据标签的选择,系统会根据用户在网站上的行为数据,提前预知已加购人群的转化比例,通过机器学习,能够自动过滤掉转化概率低的那部分用户群体。这里的计算规则是根据用户曾经是否购买过相同商品,或者是加入购物车是否是为了进行比价。
促销效果分析
通过用户分群能够了解你的客户群体特征,到底是什么样的人购买了你的商品或者对你的商品有意向,精准营销能够将这部分客户牢牢的抓在手里,用手段干预他们。对于商家来言,还需要效果分析数据。
圈定人数:活动覆盖的人群。系统能够计算符合活动标签和促销价格能够触达的人群
成交人数:活动开启后,提交订单的人数
触达人数:通过push和消息中心最终触达到的人群数量
成交金额:成交订单的总金额
三、消费者端触达的逻辑
当然,商家举办的所有活动都需要最终触达消费者端。基于购物车的营销,他的触达方式最优解就是在购物车参加活动的单品上进行用户触达,但只有覆盖的用户才会覆盖的到。触达方式分为:
购物车icon触达
购物车展示“限时”icon提醒,实时的促销倒计时提醒。时间的提醒能够增强消费者购物的紧迫感,通过促销和时间感提升喧嚣转化
降价提示,具体降价金额用红字展示,着重提醒。
消息中心触达
当活动开启时,在消息中心会收到push的营销内容,该内容为实时发送给已覆盖的人群。点击消息内容会跳转至购物车。不过这种push触达的方式效果并不是很好,点开率较低。具体的触达方式也可以看我的上一篇文章《基于大数据的会员任务营销,该怎么玩?》
结语
购物车的玩法多种多样,应该结合自家产品和研发能力评估当前阶段需要做哪些改进。但核心的目标是一致的,尽可能多的将购物车商品全部转化为订单,带来实际的收益。
⑶ 大数据领域岗位职业发展你知道吗
大数据领域岗位职业发展你知道吗
方法/步骤
国家信息中心《2017中国大数据产业发展报告》对我国大数据产业发展的人才、政策、投融资、创新创业、产业发展、区域潜力、机构和人物影响力等多个维度进行了全面分析。结果显示,我国大数据发展总体处于起步阶段。但大数据领域资本热度依然坚挺,并逆势上扬,大数据企业融资总额及单个项目平均融资金额呈加速上升态势,大数据领域成为资本蓝海。
从岗位来看,由大数据开发、挖掘、算法、分析、到架构。从级别来看,从工程师、高级工程师,再到架构师,甚至到科学家。而且,契合不同的行业领域,又有专属于这些行业的岗位衍生,如涉及金融领域的数据分析师等。
大数据的相关工作岗位有很多,有数据分析师、数据挖掘工程师、大数据开发工程师、大数据产品经理、可视化工程师、爬虫工程师、大数据运营经理、大数据架构师、数据科学家等等,下面就讲讲其中的几个岗位。
数据分析师:日常工作内容有三个方面,第一是临时取数,第二是报表的需求分析,第三是业务专题分析。
数据挖掘工程师:日常工作内容主要有五类。第一是用户基础研究,第二是个性化推荐算法,第三是风控领域应用的模型,第四是产品的知识库,第五是文本挖掘、文本分析、语义分析、图像识别。
数据产品经理:日常工作内容:第一是大数据平台的建设,让获取数据、使用数据更加容易,构建完善的指标体系,实现对业务的全流程监控,提高决策效率,降低运营成本,提升应收水平;第二是数据需求分析,形成数据产品,对内可以提升效率,控制成本,对外增加创收,最终实现数据价值的变现。
大数据研发工程师:这个岗位是需求量最大的,日常工作内容有三个方面:第一是数据的采集,比如爬虫、日志采集等;第二是数据预处理、ETL工作,比如数据清洗、转换、集成、规约等;第三是大数据应用和可视化的开发。
此外,现在越来越多的行业领域也涉猎大数据,通常来说它们可以被大致分为两类:大数据工程与大数据分析。而这些领域互相独立又互相关联。
而随着AI(人工智能)的到来,未来大数据需要依赖于云计算平台海量的计算能力,同时通过大数据给人工智能提供内容。所以在未来十年,云计算,大数据,人工智能是这个时代对社会影响最深远的技术,为此我们需要提前做好准备。
⑷ 什么是大数据产品经理
大数据是近些年流行的概念,大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据产品经理呢其实是根据实际的需求去挖掘数据的价值从而实现产出的岗位。
希望能帮助到您,望采纳
⑸ 求职:百度大数据部门:产品经理,想知道详细的
只有去贴吧问问,来他们客服一源般在贴吧!
贴吧:网络知道
找管理。
------------------------
希望你的问题得到解决;
*****望采纳*****
------------------------
⑹ 大数据行业就业方向有哪些大数据技术就业岗位有哪些
方向:大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向
就业岗位:
1、大数据工程师
大数据工程师的话其实包涵了很多,比如大数据开发,测试,运维,挖据等等,各个岗位不同薪资水平也不大相同。总的来说的话它共有6093个岗位在智联招聘上招聘,平均工资也在11643元。
2、Hadoop开发工程师
职位描述:参与优化改进新浪集团数据平台基础服务,参与日传输量超过百TB的数据传输体系优化,日处理量超过PB级别的数据处理平台改进,多维实时查询分析系统的构建优化。
3、大数据研发工程师
职位描述:
构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;服务各种业务需求,服务日益增长的业务和数据量。
4、大数据架构师
大数据架构师的招聘岗位有1446个,从招聘的薪资来看,大数据架构师基本薪资都是15K~60K,大数据架构师的薪资可以说是相当可观的,在大数据行业里,大数据架构师的酬劳可以说是领先与其他的,所以大数据架构师对于人才的要求也是比较严格的。
5、大数据分析师
工作职责:根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测。
⑺ 大数据类的产品经理要做哪些事情
数据建模
数据分析
建立用户画像
与运营一起策划活动,比如做精准营销