A. 缓存数据是啥概念
数据缓存
指在硬盘内部的高速存储器,在电脑中就象一块缓冲器一样将一些数据暂时性的保存起来以供读取和再读取。目前硬盘的高速缓存一般为512kb—2mb,目前主流ata硬盘的数据缓存为2mb,而在scsi硬盘中最高的数据缓存现在已经达到了16mb。对于大数据缓存的硬盘在存取零散文件时具有很大的优势。
B. 缓存是什么意思有什么作用
许多人认为,“缓存”是内存的一部分
许多技术文章都是这样教授的
但是还是有很多人不知道缓存在什么地方,缓存是做什么用的
其实,缓存是CPU的一部分,它存在于CPU中
CPU存取数据的速度非常的快,一秒钟能够存取、处理十亿条指令和数据(术语:CPU主频1G),而内存就慢很多,快的内存能够达到几十兆就不错了,可见两者的速度差异是多么的大
缓存是为了解决CPU速度和内存速度的速度差异问题
内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多
这里要特别指出的是:
1.因为缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速度就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。
2.因为随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,现在又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的
3.关于一级缓存和二级缓存
为了分清这两个概念,我们先了解一下RAM
ram和ROM相对的,RAM是掉电以后,其中才信息就消失那一种,ROM在掉电以后信息也不会消失那一种
RAM又分两种,
一种是静态RAM,SRAM;一种是动态RAM,DRAM。前者的存储速度要比后者快得多,我们现在使用的内存一般都是动态RAM。
有的菜鸟就说了,为了增加系统的速度,把缓存扩大不就行了吗,扩大的越大,缓存的数据越多,系统不就越快了吗
缓存通常都是静态RAM,速度是非常的快,
但是静态RAM集成度低(存储相同的数据,静态RAM的体积是动态RAM的6倍),
价格高(同容量的静态RAM是动态RAM的四倍),
由此可见,扩大静态RAM作为缓存是一个非常愚蠢的行为,
但是为了提高系统的性能和速度,我们必须要扩大缓存,
这样就有了一个折中的方法,不扩大原来的静态RAM缓存,而是增加一些高速动态RAM做为缓存,
这些高速动态RAM速度要比常规动态RAM快,但比原来的静态RAM缓存慢,
我们把原来的静态ram缓存叫一级缓存,而把后来增加的动态RAM叫二级缓存。
一级缓存和二级缓存中的内容都是内存中访问频率高的数据的复制品(映射),它们的存在都是为了减少高速CPU对慢速内存的访问。
通常CPU找数据或指令的顺序是:先到一级缓存中找,找不到再到二级缓存中找,如果还找不到就只有到内存中找了
C. 什么是大数据存储管理
1.分布式存储
传统化集中式存储存在已有一段时间。但大数据并非真的适合集中式存储架构。Hadoop设计用于将计算更接近数据节点,同时采用了HDFS文件系统的大规模横向扩展功能。
虽然,通常解决Hadoop管理自身数据低效性的方案是将Hadoop 数据存储在SAN上。但这也造成了它自身性能与规模的瓶颈。现在,如果你把所有的数据都通过集中式SAN处理器进行处理,与Hadoop的分布式和并行化特性相悖。你要么针对不同的数据节点管理多个SAN,要么将所有的数据节点都集中到一个SAN。
但Hadoop是一个分布式应用,就应该运行在分布式存储上,这样存储就保留了与Hadoop本身同样的灵活性,不过它也要求拥抱一个软件定义存储方案,并在商用服务器上运行,这相比瓶颈化的Hadoop自然更为高效。
2.超融合VS分布式
注意,不要混淆超融合与分布式。某些超融合方案是分布式存储,但通常这个术语意味着你的应用和存储都保存在同一计算节点上。这是在试图解决数据本地化的问题,但它会造成太多资源争用。这个Hadoop应用和存储平台会争用相同的内存和CPU。Hadoop运行在专有应用层,分布式存储运行在专有存储层这样会更好。之后,利用缓存和分层来解决数据本地化并补偿网络性能损失。
3.避免控制器瓶颈(Controller Choke Point)
实现目标的一个重要方面就是——避免通过单个点例如一个传统控制器来处理数据。反之,要确保存储平台并行化,性能可以得到显著提升。
此外,这个方案提供了增量扩展性。为数据湖添加功能跟往里面扔x86服务器一样简单。一个分布式存储平台如有需要将自动添加功能并重新调整数据。
4.删重和压缩
掌握大数据的关键是删重和压缩技术。通常大数据集内会有70%到90%的数据简化。以PB容量计,能节约数万美元的磁盘成本。现代平台提供内联(对比后期处理)删重和压缩,大大降低了存储数据所需能力。
5.合并Hadoop发行版
很多大型企业拥有多个Hadoop发行版本。可能是开发者需要或是企业部门已经适应了不同版本。无论如何最终往往要对这些集群的维护与运营。一旦海量数据真正开始影响一家企业时,多个Hadoop发行版存储就会导致低效性。我们可以通过创建一个单一,可删重和压缩的数据湖获取数据效率
6.虚拟化Hadoop
虚拟化已经席卷企业级市场。很多地区超过80%的物理服务器现在是虚拟化的。但也仍有很多企业因为性能和数据本地化问题对虚拟化Hadoop避而不谈。
7.创建弹性数据湖
创建数据湖并不容易,但大数据存储可能会有需求。我们有很多种方法来做这件事,但哪一种是正确的?这个正确的架构应该是一个动态,弹性的数据湖,可以以多种格式(架构化,非结构化,半结构化)存储所有资源的数据。更重要的是,它必须支持应用不在远程资源上而是在本地数据资源上执行。
不幸的是,传统架构和应用(也就是非分布式)并不尽如人意。随着数据集越来越大,将应用迁移到数据不可避免,而因为延迟太长也无法倒置。
理想的数据湖基础架构会实现数据单一副本的存储,而且有应用在单一数据资源上执行,无需迁移数据或制作副本
8.整合分析
分析并不是一个新功能,它已经在传统RDBMS环境中存在多年。不同的是基于开源应用的出现,以及数据库表单和社交媒体,非结构化数据资源(比如,维基网络)的整合能力。关键在于将多个数据类型和格式整合成一个标准的能力,有利于更轻松和一致地实现可视化与报告制作。合适的工具也对分析/商业智能项目的成功至关重要。
9. 大数据遇见大视频
大数据存储问题已经让人有些焦头烂额了,现在还出现了大视频现象。比如,企业为了安全以及操作和工业效率逐渐趋于使用视频监控,简化流量管理,支持法规遵从性和几个其它的使用案例。很短时间内这些资源将产生大量的内容,大量必须要处理的内容。如果没有专业的存储解决方案很可能会导致视频丢失和质量降低的问题。
10.没有绝对的赢家
Hadoop的确取得了一些进展。那么随着大数据存储遍地开花,它是否会成为赢家,力压其它方案,其实不然。
比如,基于SAN的传统架构在短期内不可取代,因为它们拥有OLTP,100%可用性需求的内在优势。所以最理想的办法是将超融合平台与分布式文件系统和分析软件整合在一起。而成功的最主要因素则是存储的可扩展性因素。
D. 苹果手机QQ 空间里的清除数据缓存是什么意思
“清理缓存抄数据”是指清理手机中产生的一些临时文件和图片文件,但清除缓存不会删聊天记录。比如去看了空间说说,浏览了谁的空间,照片等,加载的不是自己的东西,因为看到的文字、图片都会以一种数据存在手机里面,这就是缓存数据。可以定期或不定期清理。
E. 什么是大数据存储
Hadoop是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬回件(服务器和内答部服务器存储)组成,并形成集群能够并行处理大数据请求。在存储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。