1. 在新时期,如何利用大数据成为不可或缺的人才
感谢悟空的邀请!
在新时期,谈起大数据,相信很多人都不陌生了吧!其实大数据已经悄无声息的走入了我们的生活,大数据也是未来互联网发展的重要方向。
那么在新时期,大数据对人才的能力有何要求?如何利用大数据成为新时代不可多得的人才?下面带你详细分析下:
大家都知道,其实现在的中国市场,最缺乏的就是复合型的大数据开发人才,我认为,在新时代,要想成为大数据人才,应该从以下几方面着手:
1、大数据人才首先要拥有技术
大数据自然离不开人才,要想成为大数据不可或缺的人才 ,就必须要拥有相关大数据技能。大家都知道,大数据对人才的能力提出了更加高的要求,技术能力上大数据人才要具备java、大数据开发、大数据架构、软件开发工程等技术背景,会用大数据分析工具,了解统计模型相关知识;在一定程度上掌握Python等一类通用型编程语言,特别是编程方面一定要精通,没有哪一种大数据不需熟练掌握一门编程语言的。
2、大数据人才需要强大的跨学科学习
随着大数据向各行业的渗透,大数据从业者往往身兼数职,需要同时掌握数据技术和业务知识。一个好的大数据人才,必须具备强大的数据分析、数据挖掘的能力,而一个既能做业务数据分析,又懂机器学习和工程开发的分析师就是数据科学家。
3、 大数据人才需要坚持
任何技术的掌握都不是一朝一夕的事情,当然大数据也不例外。大数据人才对人提出了更高的需要,不仅需要掌握相关的编程语言,还需要掌握数据分析能力,这就要求我们想要全方位提升自己的大数据业务水平,必须要坚持学习,只有具备大数据知识了,我们才能投入到大数据行业添砖加瓦。
4、 坚持学习的能力
大数据人才要有较强的沟通协调能力、学习能及推动能力、善于执行和监控,有较强的组织和责任意识,还需要强大的逻辑思维能力、归纳演绎能力帮助理解业务,能快速学习全新领域的商业模式和生态。
5、心态很重要
学习大数据的时候,一定要有良好的心态,大数据学习是一个枯燥的国产。要想学有所成,心态极其重要,不是什么东西一学就会的。
总结:在新时期,目前大数据人才已经成为市场上不可或缺的人才,大数据已经悄无声息的进入到很多行业了。但学习大数据不是一朝一夕的事情,需要有规划有计划的学习、要有坚持学习的能力,只有这样,才会在新时期,成为新时代所需要的大数据不可多得的人才…
大数据是我的主要研究方向之一,同时也在带大数据、机器学习方向的研究生,所以我来回答一下这个问题。
首先,当前正处在大数据时代,大数据未来将创造出一个巨大的新价值领域,而这个领域的核心就是围绕数据价值化的一系列环节。从目前大数据领域所形成的初步产业链来看,涉及到数据采集、数据整理、数据存储、数据安全、数据分析和数据引用,目前数据分析是比较常见的落地应用之一。所以,要想利用大数据成为不可或缺的人才应该从大数据产业链入手。
对于当前没有进入职场的大学生来说,根据自身的知识结构来掌握相应的大数据技术能够在一定程度上提升自身的职场竞争力。比如具备数学基础的同学可以考虑学习一下大数据分析技术,未来对于大量的职场人来说,数据分析将是日常工作的一部分。对于动手能力比较强的同学,可以考虑学习一下大数据运维的相关技术,包括数据采集、大数据平台部署等。随着大数据逐渐开始落地到传统行业,大数据分析、大数据运维、大数据开发等岗位将有大量的人才需求。
对于当前的职场人来说,要想通过大数据成为不可或缺的人才,需要从三个方面入手,其一是掌握大数据技术;其二是把大数据技术与行业相结合;其三是能够通过大数据技术创造出源源不断的价值。
学习大数据技术要根据自身的知识结构来学习,对于职场人来说,可以从大数据分析工具开始学习,基本的学习路线是Excel、BI工具、数据库、Python编程。大数据与行业的结合有多种不同的方式,目前场景大数据分析是比较常见的落地应用。要想通过大数据技术来创造出价值,一个重要的出发点就是通过大数据完成各自决策的制定,大数据不是目的,通过大数据完成各自决策才是目的。大数据一方面是给人力岗位使用,另一方面是给智能体使用,未来智能体的应用空间将非常广阔。
我是从以前做淘宝天猫的,今年不做的。在我看来大数据有点类似淘宝的生意参谋,它会给您提供行业各种数据,只是现在应该这个数据维度更丰富了。比如这个行业同行的转化率,有些行业的转化率,进店访客等等;在电商平台都是可以看到的,但是实体以前是做不到的。
现在随着数字技术的发展,以及实体行业对消费反馈收集困难等原因,才有了大数据的概念。比如现在好多行业面临的问题是自己设计的产品,消费者不喜欢,卖不出去。可以如果有了大数据,你就知道你的客户男女比例多少,年龄分布、喜好什么价位的产品等等,让你设计的产品更精准。
其实在我看来,你成为数字化的运营高手,你就可以成为不可或缺的人才。
大数据在我看来就是“1+1=N”。
怎么说呢,比如大数据提供给您行业转化率是多少,你的实体转化率是多少?等等,你想成为不可或缺的人才,那你就要有通过这些数据知道我公司现在问题出现在什么地方了?是什么因素刺激的出现了这种情况的能力,比如这周你店铺成交额涨了多少?这是数据给您能提供的,但是为什么涨了,数据给您提供不了,这你要自己分析,是有节气,还是因为你做了一个什么活动等,并针对现有数据对下一周做出计划。
数据给你的是“1+1=N”你要做的就是把这个数据反映到实物上,并进行分析,并制定下一步公司运作计划。
比如现在是数据给你1+1=3,那你就要分析为什么是3,不是2或者1甚至0呢?是什么刺激这个数据的增长了,是因为你在某些方面优化了还是因为有节气等,下一步什么安排等,也就是说你的每一步都能从数据反映出来,并能分析数据,做出下一步的安排等。
好了就说这么多吧,说太细我怕我理解的不准确,误导人。
对于一个企业来说,大数据可以拓宽产品的销售渠道和提升服务质量。有利于获取市场的动态和了解分析用户需求体验。
大数据如何才能发挥其作用,最重要的还是得有相对应的人才为它进行分析整理。
大数据可以让业内的情况变得清晰明了,是事实的支撑,通过数据可以知道业内的最新动态,根据数据分析,及时做出方案调整 有利于企业的发展。
大数据的工作中最重要的是什么?
1. 细致精准的数据采集;
2. 同时具备逻辑性与适用性;
3. 数据标签的规划切实可行(务实);
4. 具备行业垂直度的商业性思维能力;
5. 能够做到更强的扩展性构架。
总结来说,商业化的大数据最重要的价值便是逻辑性与适用性,而扩展性也能保证在实践中更有竞争力,最后便是务实和思维能力的支撑。
任何时代的任何职业都需要面对竞争,所以能够产生的价值决定了我们被需求的程度,如想成为那个不可或缺的人,不仅要具备能力,还要具备务实的心态!
感谢悟空邀请回答。当今世界是 科技 高速发展的时代,也同样是大数据时代,竞争也是十分的激烈,要想成为大数据不可或缺的人才,必须要保证自己的专业知识过硬,这是一个看技术的活,弱者会被淘汰只有强者才能生存!
大数据可以拓宽产品的销售渠道和提升服务质量。有利于获取市场的动态和了解分析用户需求体验。
大数据如何才能发挥其作用,最重要的还是得有相对应的人才为它进行分析整理。
大数据可以让业内的情况变得清晰明了,是事实的支撑,通过数据可以知道业内的最新动态,根据数据分析,及时做出方案调整 有利于企业的发展。
2. 大数据人才需求有哪些趋势
当前大数据领域的人才需求有三个较为明显的趋势,这些趋势一定要引起从业者的重视,其一是大数据岗位的划分逐渐行业化,更多行业领域出现了自己的大数据岗位,这些岗位不再仅仅以开发岗、算法岗来划分,而更趋向于全栈化,这就要求从业者的知识结构要更加全面化。
其次是大数据领域的创新会更趋向于数据价值出口的打造,这个过程会要求大数据与更多技术相结合,比如大数据与区块链的结合就有很多创新点。从大的发展和创新趋势来看,大数据未来将是互联网(包括产业互联网)价值的主要承载方式之一,所以互联网的价值越大则大数据的价值就越大,基于这个创新思路,大数据技术必然要与众多技术手段相结合。
除此之外,大数据的生产将从被动变为主动,传统的数据采集方式将发生变化,传统的数据采集概念会逐渐被数据生产概念所取代,而如何生产数据则是大数据从业者需要重点考虑的核心问题之一,所以掌握大数据生产技术将会有更大的发展空间。
最后,大数据不论如何发展,大数据的背后都是各种资源,随着行业资源和社会资源纷纷向互联网迁移,资源和数据的边界也在逐渐模糊,资源即是数据,从这个角度来看,未来更多的行业从业者都可以看成是大数据从业者。
关于大数据人才需求有哪些趋势,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
3. 大数据人才缺口大,我该如何选择专业
未来的就业市场将更加注重技术和科学领域的人才,特别是涉及到AI、大数据、云计算、物联网等技术的人才。因此,如果你有机会重新选择档族专业,建议选择计算机科学、数据科学、人工智能、机器学习、深度学习等领域的专业,这些领域的人才需求将越来越高。
此外,我们也应该注意到,未来的就业市场将更加重视跨学科的综合能力,例如具备良好的沟通、合作和领导能力,同时还需要具备对商业和市场的理解。因此,在选择专业时,我们也应该关注其它学科,例如商业、市场营销、管理等。
总拿蠢中之,未来就业市场的趋势是技术和科学领域的人才需求将越来越高,同时也需要具备跨消山学科的综合能力,因此选择相应的专业可以更好地适应未来的就业市场。
4. 大数据需要哪些人才_大数据人才需要具备的能力有哪些
大数据需要以下六类人才含让:
一、大数据系统研发工程师。
这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。
二、大数据应用开发工程师。
此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。
三、大数据分析师。
此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,歼清企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是最抢手的大数据人才,他们所从事的是热门的分析师工作。
四、数据可视化工程师。
此类人才负责在收集到的高质量数据中,利用图形化的工具及手段的应用,清楚地揭示数据中的复杂信息,帮助用户更好地进行大数据应用开发,如果能使用新型数据可视化工具如Spotifre,Qlikview和Tableau,那么,就成为很受欢迎的人才。
五、数据安全研发人才。
此类人才主要负氏老前责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施,而对于数据安全方面的具体技术的人才就更需要了,如果数据安全技术,同时又具有较强的管理经验,能有效地保证大数据构设和应用单位的数据安全,那就是抢手的人才。
六、数据科学研究人才。
数据科学研究是一个全新的工作,够将单位、企业的数据和技术转化为有用的商业价值,随着大数据时代的到来,越来越多的工作、事务直接涉及或针对数据,这就需要有数据科学方面的研究专家来进行研究,通过研究,他们能将数据分析结果解释给IT部门和业务部门管理者听,数据科学专家是联通海量数据和管理者之间的桥梁,需要有数据专业、分析师能力和管理者的知识,这也是抢手的人才。
5. 大数据人才培养
01
大数据的重点
大数据是为了解决具体的问题,例如,科学研究问题,商业决策问题,政府管理问题等,基于数据驱动的智能化解决问题。
02
大数据人才培养的重点
大数据的人才培养时一定以问题和目标为导向,研究和选择合适的技术加以应用,怎么快速组合、快速搭积木、快速产出的问题。
不同的业务领域需要不同方向理论、技术和工具的支持,是业务决定技术和工具,而不是根据技术、工具来考虑业务。
03
大数据人才的思维方式
大数据人才的“数据驱动”与“数据闭环”思维方式。
数据闭环是指构造起包括数据采集、建模分析、效果评估到反馈修正各个环节在内的完整“数据闭环”,从而能够不断地自我升级,螺旋上升;
数据驱动是指经营管理决策可以自下而上地由数据来驱动。
大数据人才需要涉及交叉学科和交叉领域,通过完整的培训体系培养大数据人才的全局观、大局观,既可以自顶向下的通过业务探索数据背后蕴含的商业价值,又可以自底向上的去实现数据获取、数据挖掘、以及数据决策的全流程,以适应大数据时代的发展。
6. 应对大数据人才短缺的四种方式
应对大数据人才短缺的四种方式_数据分析师考试
在一份关于大数据增长趋势的调研报告中,IDC表示,较之其他的商业智能(BI)工具,可视化数据发现工具在市场上的增长要比前者快2.5倍;而基于云的大数据和分析(BDA)解决方案的开销增速将是其他类型的企业内部部署解决方案的三倍。
然而,在未来几年大数据领域仍将继续面临人才的严重缺乏尴尬境地。IDC预测,到2018年,仅在美国就有181000个深度数据分析师的角色 空缺,而这一空缺将是与数据管理相关或解释需要相关技能职位空缺的五倍。然而,市场缺没有足够多合格的申请者来填补这些职位空缺。
Gartner表示,今年,大数据的需求将在全球范围内创造440万个就业机会,但却只有三分之一的岗位能够招到合适的人才。
这是因为大数据分析所需要的技能不仅仅是使用仪表板监控数据流。该领域的人才需要在数据科学方面具备高水平的技能来设置相应的搜索和参数,以设 计滤波算法(filtering algorithms)。这类人才需要硕士学位甚至博士学位,没有相关的技能,无法获得相应的行业资质认证。
根据Burtch在2013年的调查发现,近九成的大数据专业人员具有诸如统计学,应用数学,运筹学或经济学等相关学科硕士以上学历。
而根据来自麦肯锡全球研究所的另一项调查显示,预计到2018年,美国将面临大约150万大数据专家的短缺。
那么,如果你企业无法招聘到具备相关高学历背景的大数据专家的话,您企业要如何应对呢?本文接下来的部分,我将为您介绍四种可供选择的方法,以帮助您企业发现、发展和留住相关的大数据人才。
1、从真正熟悉您企业业务的人开始着手
“我非常认可大数据技能非常紧缺这一评估,”Gartner信息管理研究室主任Nick Heudecker表示。“许多企业客户甚至不知道他们需要从什么技能开始着手,更不用说如何才能这些技术。他们对于自己企业将面临怎样的问题,以及亟待 解决的分析技能是无意识的。”
企业往往认为他们需要一个具有先进的数据科学或数学博士学位的专业人士,但Heudecker表示,一个替代的方法是找一个真正熟悉您企业的业务的人员,并教给这些人员相关的分析能力。
从理解您企业的业务开始要比从对于机器学习的理解开始来得更为重要。企业可以教给员工进行数据处理和统计,或找到具备编程背景学位的人。企业可以通过对这些人实施更多培训,并让这些人员加入到您企业的大数据和先进的分析团队,他说。
2、培养您企业自己的超级巨星
领先的大数据软件提供商Tamr公司的现场工程技术负责人Min Xiao说,在过去的五年里,他已经面试过大约500人,并实际招募了约40至50人,他同意找到合适的大数据分析人才是很难的,但他也有自己寻找人才的方法。
“我的诀窍是找到那些当前还不是超级巨星,但要具备潜在的成长为超级巨星潜力的人才。我尝试聘请过很多从未从事过数据科学家相关工作的年轻人, 但我可以看到他们有这方面的潜力;或是那些目前尚只有中级或中高级水平的潜力,目前也没有做过数据科学相关工作,但具备成长成为该领域实力巨匠潜力的人 才。”他说。
他所看重的潜力主要是教育,包括学历和学校。他所考察的人才主要来自统计学,计算机科学等相关专业,有时包括物理专业。当然物理专业的人才可能不会是数据分析工作岗位的首选学位,但Xiao说他跟那些人合作得都很好。
“首先,如果他们有物理学位,说明他们很聪明。他们接受过数学课程的训练,而现代物理课程还需要他们做大量的编程。所以他们即使可能没有接受过正式的计算机科学的训练,但却已经具备了数据科学家角色所需的计算机技能,他们中的许多人甚至在这方面很擅长。”他说。
他着重考察的另一方面是应聘人才的毕业院校是否强调数学和科学,诸如像麻省理工学院,卡耐基梅隆大学,斯坦福大学,布朗和约翰·霍普金斯大学。”一些院校的毕业门槛非常高,所以从这些院校毕业的人工作努力程度很高,工作的态度很好。”Xiao说。责任编辑:qxcpw24895.com
3、寻找Excel专家
The Hershey Company人才分析部门经理Jason Chavarry在另一个不寻常的领域找到了大数据人才:微软Excel用户。
“Excel可以说是一份沃土,很多人从中获得有大数据的能力,他们往往被人们请教,以帮助其他的工作,”他说。
他补充说,Excel是一个入门级的管道里的人学习,是在大数据的分析,发现其基本的功能。”每个人都是用大量的基本功能。你如何制定出一个报 告或电子表格,你创造什么样的规则。Excel穿过所有的人。你可以使用它的基础水平的统计,基本的数据分析和可视化,”他补充道。
他补充说,Excel是学习大数据分析基本功能的一款入门级的学习管道。“我们每个人一般都只是大量了其一些基本功能。例如制做出一份报告或电子表格。但其实我们可以通过其创造一些相应的规则。通过利用其基础的统计功能,实现一些基本的数据分析和可视化。”他补充道。
但Chavarry指出,针对不同规模的项目也需要不同的工具。对于有5000行数据的分析项目,采用诸如SAS或R这样的工具无疑将是矫枉过 正,但若采用Excel的将是非常完美的。而若是有20万行的数据,Excel的功能就明显不够强大了。这时,你就需要大数据软件和编程知识,但并不拘泥 于一种特定语言。
“你真的不需要特定拘泥于关心采用哪种语言。如果有员工能够用一种语言来实现,那么其必然有能力以别的语言来实现。因此,你企业寻找的是具备学习能力的人才。” Chavarry说。
4、自行培养人才
鉴于大数据人才的稀缺,大多数企业的解决方案将是采用自行培养人才的方式。据大数据软件集成公司Talend的CMO Ashley Stirrup称,该公司通过建立一个导师计划,让有经验的专家来培训年轻人才,取得了良好的结果。
“有一类人能够作为嫁接其业务部门和新兴技术之间的桥梁。”Stirrup说。“通常,企业业务部门的人员还没有意识到的新技术对于业务进展的潜力,而对于一些高科技,他们也不知道如何使用。”
不幸的是,留住人才是相当困难的。Talend公司的客户说,他们培训了一些人,让他们接受新技术,然后这个人很可能会被其他公司以50%或更高的涨薪诱惑挖走,所以他们很难找到合适的人才,也更难找针对这些人才实施培训之后,将它们留住。
那么,企业应该如何留住这些人才呢,签订短期性约束力的合同协议可能有损与员工的关系? “关键在于想让这些经过专业培训的人才展示出他们能够在您的企业充分使用并展示他们的技能,而且,他们留在您的公司会更具有价值潜力。此外,企业需要设置 一定的期望,而不要看合同,” Stirrup说。
Xiao也正遭遇同样的人才争夺的问题。他说,他所在的Tamr公司试图激发所雇佣人才的团队意识,并激励他们寻找在该公司的价值。“当他们找 到与自己有‘共同语言’的同事,员工通常会认可这便是自己在未来几年将要心甘情愿合作的团队。鉴于市场竞争是如此激烈,我们真诚的希望员工能够在外面公司 获得成功,否则我们将无法吸引到更好的人才。”他说。
Heudecker也认为公司应该鼓励人才,而不是束缚人才。“您企业可能并不需要一个博士团队。也许只需要一个拥有统计学、计算机科学和工商 管理硕士学位的人。考察一下那些可能只有本科学历的员工,看看他们是否对于数据分析方面感兴趣。公司应该提供激励性的基础训练和方法来确保将员工留在企 业,因为这些技能在现如今的需求都是如此迫切。”他说。
Heudecker说,最终,大数据将成为新的常态,而人才储备也将扩大。 “如果我们看一下大数据的基础架构,它非常类似于80年代的RDBMS市场。彼时,其还没有被广泛应用,但人们已经在部署建造它们。而同样的事情将在大数据领域发生。”
以上是小编为大家分享的关于应对大数据人才短缺的四种方式的相关内容,更多信息可以关注环球青藤分享更多干货
7. 为什么说大数据人才紧缺
因为大数据也就是这两年才兴起的,所以精通大数据的人不是很多,这样就造成了需求跟实际人才供应数量不对等的,所以就紧缺了。
8. 大数据人才发展与就业前景,你了解多少
1、ETL研发
2、Hadoop开发