导航:首页 > 网络数据 > 大数据hadoop云计算

大数据hadoop云计算

发布时间:2023-06-04 22:49:23

㈠ 什么是大数据分析Hadoop

要了解什么是Hadoop,我们必须首先了解与大数据和传统处理系统有关的问题。前进,我们将讨论什么是Hadoop,以及Hadoop如何解决与大数据相关的问题。我们还将研究CERN案例研究,以突出使用Hadoop的好处。

在之前的博客“ 大数据教程”中,我们已经详细讨论了大数据以及大数据的挑战。在此博客中,我们将讨论:

1、传统方法的问题

2、Hadoop的演变

3、Hadoop的

4、Hadoop即用解决方案

5、何时使用Hadoop?

6、什么时候不使用Hadoop?

一、CERN案例研究

大数据正在成为组织的机会。现在,组织已经意识到他们可以通过大数据分析获得很多好处,如下图所示。他们正在检查大型数据集,以发现所有隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用的业务信息。

这些分析结果正在帮助组织进行更有效的营销,新的收入机会,更好的客户服务。他们正在提高运营效率,与竞争对手组织相比的竞争优势以及其他业务利益。


什么是Hadoop –大数据分析的好处

因此,让我们继续前进,了解在兑现大数据机会方面与传统方法相关的问题。

二、传统方法的问题

在传统方法中,主要问题是处理数据的异构性,即结构化,半结构化和非结构化。RDBMS主要关注于银行交易,运营数据等结构化数据,而Hadoop则专注于文本,视频,音频,Facebook帖子,日志等半结构化,非结构化数据。RDBMS技术是一种经过验证的,高度一致,成熟的系统许多公司的支持。另一方面,由于大数据(主要由不同格式的非结构化数据组成)对Hadoop提出了需求。

现在让我们了解与大数据相关的主要问题是什么。因此,继续前进,我们可以了解Hadoop是如何成为解决方案的。


什么是Hadoop –大数据问题

第一个问题是存储大量数据。

无法在传统系统中存储大量数据。原因很明显,存储将仅限于一个系统,并且数据正在以惊人的速度增长。

第二个问题是存储异构数据。

现在,我们知道存储是一个问题,但是让我告诉您,这只是问题的一部分。由于我们讨论了数据不仅庞大,而且还以各种格式存在,例如:非结构化,半结构化和结构化。因此,您需要确保您拥有一个系统来存储从各种来源生成的所有这些种类的数据。

第三个问题是访问和处理速度。

硬盘容量正在增加,但磁盘传输速度或访问速度并未以相似的速度增加。让我以一个示例为您进行解释:如果您只有一个100 Mbps I / O通道,并且正在处理1TB数据,则大约需要2.91个小时。现在,如果您有四台具有一个I / O通道的计算机,则对于相同数量的数据,大约需要43分钟。因此,与存储大数据相比,访问和处理速度是更大的问题。

在了解什么是Hadoop之前,让我们首先了解一下Hadoop在一段时间内的发展。

Hadoop的演变



2003年,道格·切特(Doug Cutting)启动了Nutch项目,以处理数十亿次搜索并为数百万个网页建立索引。2003年10月下旬– Google发布带有GFS(Google文件系统)的论文。2004年12月,Google发布了MapRece论文。在2005年,Nutch使用GFS和MapRece进行操作。2006年,雅虎与Doug Cutting及其团队合作,基于GFS和MapRece创建了Hadoop。如果我告诉您,您会感到惊讶,雅虎于2007年开始在1000个节点的群集上使用Hadoop。

2008年1月下旬,雅虎向Apache Software Foundation发布了Hadoop作为一个开源项目。2008年7月,Apache通过Hadoop成功测试了4000个节点的集群。2009年,Hadoop在不到17小时的时间内成功整理了PB级数据,以处理数十亿次搜索并为数百万个网页建立索引。在2011年12月,Apache Hadoop发布了1.0版。2013年8月下旬,发布了2.0.6版。

当我们讨论这些问题时,我们发现分布式系统可以作为解决方案,而Hadoop提供了相同的解决方案。现在,让我们了解什么是Hadoop。

三、什么是Hadoop?

Hadoop是一个框架,它允许您首先在分布式环境中存储大数据,以便可以并行处理它。 Hadoop中基本上有两个组件:

1、大数据Hadoop认证培训

2、讲师指导的课程现实生活中的案例研究评估终身访问探索课程


什么是Hadoop – Hadoop即解决方案

第一个问题是存储大数据。

HDFS提供了一种分布式大数据存储方式。您的数据存储在整个DataNode的块中,您可以指定块的大小。基本上,如果您拥有512MB的数据,并且已经配置了HDFS,那么它将创建128MB的数据块。 因此,HDFS将数据分为512/128 = 4的4个块,并将其存储在不同的DataNode上,还将在不同的DataNode上复制数据块。现在,由于我们正在使用商品硬件,因此存储已不是难题。

它还解决了缩放问题。它着重于水平缩放而不是垂直缩放。您始终可以根据需要随时在HDFS群集中添加一些额外的数据节点,而不是扩展DataNodes的资源。让我为您总结一下,基本上是用于存储1 TB的数据,您不需要1 TB的系统。您可以在多个128GB或更少的系统上执行此操作。

下一个问题是存储各种数据。

借助HDFS,您可以存储各种数据,无论是结构化,半结构化还是非结构化。由于在HDFS中,没有预转储模式验证。并且它也遵循一次写入和多次读取模型。因此,您只需写入一次数据,就可以多次读取数据以寻找见解。

Hird的挑战是访问和处理数据更快。

是的,这是大数据的主要挑战之一。为了解决该问题,我们将处理移至数据,而不是将数据移至处理。这是什么意思?而不是将数据移动到主节点然后进行处理。在MapRece中,处理逻辑被发送到各个从属节点,然后在不同的从属节点之间并行处理数据。然后,将处理后的结果发送到主节点,在该主节点上合并结果,并将响应发送回客户端。

在YARN架构中,我们有ResourceManager和NodeManager。ResourceManager可能会或可能不会与NameNode配置在同一台机器上。 但是,应该将NodeManager配置在存在DataNode的同一台计算机上。

YARN通过分配资源和安排任务来执行您的所有处理活动。

什么是Hadoop – YARN

它具有两个主要组件,即ResourceManager和NodeManager。

ResourceManager再次是主节点。它接收处理请求,然后将请求的各个部分相应地传递到相应的NodeManager,什么是大数据分析Hadoop在此进行实际处理。NodeManager安装在每个DataNode上。它负责在每个单个DataNode上执行任务。

我希望现在您对什么是Hadoop及其主要组件有所了解。让我们继续前进,了解何时使用和何时不使用Hadoop。

何时使用Hadoop?

Hadoop用于:

1、搜索 – Yahoo,亚马逊,Zvents

2、日志处理 – Facebook,雅虎

3、数据仓库 – Facebook,AOL

4、视频和图像分析 –纽约时报,Eyealike

到目前为止,我们已经看到了Hadoop如何使大数据处理成为可能。但是在某些情况下,不建议使用Hadoop。

㈡ 如何架构大数据系统hadoop

大数据数量庞大,格式多样化。

大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。

它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。

因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

大数据产生的根本原因在于感知式系统的广泛使用。

随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。

这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。

因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。

2)数据的汇集和存储

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

数据只有不断流动和充分共享,才有生命力。

应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。

数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。

3)数据的管理

大数据管理的技术也层出不穷。

在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。

其中分布式存储与计算受关注度最高。

上图是一个图书数据管理系统。

4)数据的分析

数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。

大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。

批处理是先存储后处理,而流处理则是直接处理数据。

挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。

5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。

6)数据的使用

大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。

大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

二、大数据基本架构

基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。

一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。

因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。

Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。

其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:

Hadoop体系架构

(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。

(2)Hadoop的核心是MapRece(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Rece则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。

当处理大数据查询时,MapRece会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。

(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。

Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。

Hbase利用MapRece来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。

(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。

(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。

(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。

Hadoop核心设计

Hbase——分布式数据存储系统

Client:使用HBase RPC机制与HMaster和HRegionServer进行通信

Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况

HMaster: 管理用户对表的增删改查操作

HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table

HStore:HBase存储的核心。

由MemStore和StoreFile组成。

HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件

结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:

应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。

于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。

基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。

数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。

丰富的数据源是大数据产业发展的前提。

数据源在不断拓展,越来越多样化。

如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。

对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。

然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。

三、大数据的目标效果

通过大数据的引入和部署,可以达到如下效果:

1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

㈢ 大数据与Hadoop之间的关系

大数据开发人员复可制以通过Hadoop提供的系统级服务支持从而帮助企业完成大数据改造,对于开发人员来说,只需要关注于具体的服务实现就可以了,系统级功能已经由Hadoop提供了实现。所以,Hadoop是大数据开发人员的重要基础

由于Hadoop对硬件的要求并不高,所以很多初学者(有Ja-va基础)都是从Hadoop开始学习大数据的,目前很多商用大数据平台也是基于Hadoop的。

㈣ 大数据与Hadoop之间是什么关系

大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理版、传输、权存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。

大数据技术的三个重点:Hadoop、spark、storm。Hadoop本身就是大数据平台研发人员的工作成果,Hadoop是目前常见的大数据支撑性平台,Hadoop平台提供了分布式存储(HDFS)、分布式计算(MapRece)、任务调度(YARN)、对象存储(Ozone)和组件支撑服务(Common)。

㈤ Hadoop,大数据,云计算三者之间有什么关系

大数据和云计算是何关系?关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。大数据、hadoop及云计算之间到底是什么关系呢?

大数据开发入门 课程:hadoop大数据与hadoop云计算,Hadoop最擅长的事情就是可以高效地处理海量规模的数据,这样Hadoop就和大数据及云计算结下了不解之缘。先介绍与大数据相关的内容,然后讲解Hadoop、大数据以及云计算之间的关系,使读者从大数据和云计算的角度来认识Hadoop。

正是由于大数据对系统提出了很多极限的要求,不论是存储、传输还是计算,现有计算技术难以满足大数据的需求,因此整个IT架构的革命性重构势在必行,存储能力的增长远远赶不上数据的增长,设计最合理的分层存储架构已成为信息系统的关键。分布式存储架构不仅需要scale up式的可扩展性,也需要scale out式的可扩展性,因此大数据处理离不开云计算技术,云计算可为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,大数据技术与云计算技术必将有更完美的结合。

我们知道云计算的关键技术包括分布式并行计算、分布式存储以及分布式数据管理技术,而Hadoop就是一个实现了Google云计算系统的开源平台,包括并行计算模型MapRece、分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper、Pig、Chukwa、Hive、hbase、Mahout等,这些项目都使得Hadoop成为一个很大很完备的生态链系统。目前使用Hadoop技术实现的云计算平台包括IBM的蓝云,雅虎、英特尔的“云计划”,网络的云计算基础架构,阿里巴巴云计算平台,以及中国移动的BigCloud大云平台。

总而言之,用一句话概括就是云计算因大数据问题而生,大数据驱动了云计算的发展,而Hadoop在大数据和云计算之间建起了一座坚实可靠的桥梁。东时java大数据培训培养能够满足企业要求的以java web开发技术为主要能力的工程师。完成学习后的工程师应当胜任java web开发工程师、大数据开发工程师等职位。

㈥ 数据仓库,大数据和云计算有什么区别和联系

您好,上海蓝盟为您解答。
首先简单的看一下云计算与大数据的概念.
1)云计算:云计算本质上是一种计算资源集中分布和充分共享的效用计算模式,其中集中是为了计算资源的集约化管理,分布是便于扩展计算能力.集中分布式是针对云服务提供商的,充分共享是针对用户,在云计算中,虽然对于每个云用户来说都拥有一台超级计算机,但本质上,这些用户是充分共享了云服务商所提供的计算服务.而效用计算更多的是一种商业模式,就是用户按所需服务来付费.
2)在前面的博文中,对大数据有个讨论,简单的说,大数据的特点就是数据量大(虽然很多人都把大数据定义在T级别以上,其实我觉得这是有问题的,大数据的大其实应该是个相对概念,是相对于当前的存储技术和计算能力的),数据应用需求大,计算量大.数据量大是最基本的,需求大其实包含了需求的数量、多样性和实时性.计算量大是因为数据量大和需求量大和算法复杂(检索,推荐,模式识别)所致.大数据的这种特点使得我们很难找到通用的处理模式来解决大数据所面临的问题,我们只能针对不同的需求采用不同的处理方法,这也是大数据处理比较困难的症结所在。无论是传统的数据库还是最近兴起的NoSQL数据库,在大数据存储和处理方面其实都是有非常大的局限性的,所以分布式计算才在大数据处理中大兴其道。Hadoop虽然提供了比较完整的一套处理模式,但相对于大数据所面临的应用需求的多样性而言,能处理的问题域也是十分有限的。
数据库和数据仓库的概念,大家google一下就可以了,接下来,我们看看它们之间的关系:
1)数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。
2)由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本架构模式是C/S模式,其中S相对集中,而C是广泛分布。所有用户的数据和绝大部分的计算都是在S端完成的(数据量大,计算量大),加上用户也天然具有多样性(地域,文化,需求,个性化等),因此需求(也包括计算量)就非常大。
3)云计算当然会涉及到数据的存储技术,但数据库技术对于云计算来说要视具体的情况来分析:
A)对于IaaS而言,数据库技术不是必需的,也不是必备的功能;
B)对于PaaS来说,数据库功能应该是必备的功能
C)对于SaaS而言,必然会用到数据库技术(包括传统关系数据库和NoSQL数据库)。
而对于数据仓库技术,并不是云计算所必需的,但由于云数据的信息价值极大,类似一座金矿,我想云服务商是不可能放过从这些金矿中提取金子的.
4)大数据首先所面临的问题就是大数据的存储问题,一般都会综合运用各种存储技术(文件存储,数据库存储),当然,你完全用文件存储或者数据库存储来解决,也是没问题的。与云计算类似,数据仓库技术不是必需的,但对于数据仓库技术对于结构化数据进行淘金还是非常有用的,当然,你不用数据仓库技术也可以,比如Hadoop模式。
在云计算和大数据处理中,最基础的技术其实是分布式计算技术。而对于构建分布式计算而言,多线程,同步,远程调用(RPC,RMI等),进程管理与通信是其基本技术点。分布式计算编程是一种综合性应用编程,不仅需要有基本的技术点,还需要一定的组织管理知识。
就目前来说,云计算和大数据处理其实都没有形成一个统一的标准和定义。希望我的回复对您有所帮助。

㈦ 大数据和云计算有什么关系

云计算和大数据能做什么,很多人都分不清楚,那么云计算与大数据的关系是什么呢?今天就给大家简单的分析一下。
云计算:云计算是通过互联网提供全球用户计算力、存储服务,为互联网信息处理提供硬件基础。云计算,简单说就是把你自己电脑里的或者公司服务器上的硬盘、CPU都放到网上,统一动态调用,现在比较有名的云计算服务商是亚马逊的AWS。
大数据:大数据运用日趋成熟的云计算技术从浩瀚的互联网信息海洋中获得有价值的信息进行信息归纳、检索、整合,为互联网信息处理提供软件基础。大数据,简单说,就是把所有的数据放到一起分析,找到关联,实现预测。这里的所有数据对应的是之前的抽样调研取得的部分数据。

云计算与大数据的关系:
云计算是基础,没有云计算,无法实现大数据存储与计算。大数据是应用,没有大数据,云计算就缺少了目标与价值。两者都需要人工智能的参与,人工智能是互联网信息系统有序化后的一种商业应用。这才是:云计算与大数据真正的出口!
而商业智能中的智能从何而来?方法之一就是通过大数据这个工具来对大量数据进行处理,从而得出一些关联性的结论,从这些关联性中来获得答案,因此,大数据是商业智能的一种工具。 而大数据要分析大量的数据,这对于系统的计算能力和处理能力要求是非常高的,传统的方式是需要一个超级计算机来进行处理,但这样就导致了计算能力空的时候闲着、忙的时候又不够的问题, 而云计算的弹性扩展和水平扩展的模式很适合计算能力按需调用,因此,云计算为大数据提供了计算能力和资源等物质基础。

㈧ 什么事云计算和大数据的解释

云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网轿盯相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Maprece数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从慧旦系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。

云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的闭碧和“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。

阅读全文

与大数据hadoop云计算相关的资料

热点内容
win7升级到专业版 浏览:282
qq飞车s车排行榜2017 浏览:671
揭示板网站怎么看 浏览:202
ps文件转换为ai文件吗 浏览:695
苹果升级到一半不动了 浏览:715
w7网络图标怎么设置 浏览:773
2016中国app应用创新峰会 浏览:680
用python写聊天程序 浏览:818
安装win10后是英文版 浏览:509
安卓支付宝停止运行怎么办 浏览:214
如何让文件整理的好 浏览:58
电脑评标专家库网站进不去怎么办 浏览:661
word怎么删除所有标点符号 浏览:423
86版本漫游带战神套 浏览:477
GT编程软件怎么下载和上传 浏览:356
泰坦之旅配置文件 浏览:606
文件柜批发价格如何计算 浏览:118
在北京学java哪里好 浏览:825
视频文件夹怎么起名 浏览:505
mac显示文件夹 浏览:651

友情链接