导航:首页 > 网络数据 > 大数据对决策者的意义

大数据对决策者的意义

发布时间:2023-06-04 12:56:00

大数据的意义有哪些

大数据有哪些重要的作用
主要由以下三点作用:

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

大数据的含义包括什么哪几个方面?
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
什么是大数据,大数据的意义是什么?
大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
什么是大数据?有什么意义?
大数据就是大量的数据,通过分析找出他们的规律
大数据是什么含义?
大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。
大数据的含义包括哪些
大数据(英语:Big data[1][2]或Megadata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。

在总数据量相同的情况下,与个别分析独立的小型数据集(data

set)相比,将各个小型数据 *** 并后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。

大数据的应用示例包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。
互联网大数据有哪些好处多
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。

现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。

通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。

大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。

以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。

为什么使用大数据?

数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。

现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。

更完整的解析

大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。

现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。

类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。

大数据是什么?

由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:

量级(Volume):大量的数据

速率(Velocity):高速的数据产出

多样性(Variety):多种类型和来源的数据。

正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:

网站分析

移动分析

设备/传感器数据

用户数据(CRM)

统一的企业数据(ERP)

社交数据

会计系统

销售点系统

销售体系

消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)

公司内部电子表格

公司内部数据库

位置数据(空间位置、GPS定位的位置)

天气数据

但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。

想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。

大数据的好处

大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......
什么是大数据?大数据是什么意思?
“大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。

大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。

大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。

互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。

大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。

数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 *** ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。

在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。

数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。

商业智能的应用范围

1.采购管理

2.财务管理

3.人力资源管理

4.客户服务

5.配销管......
何谓大数据?大数据的特点,意义和缺陷.
大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

特点:

1.数据量大;

2.数据类型多;

3.数据处理实时性强;

4.数据真实性。

意义:大数据的意义在于通过对大量数据进行分析从而对核心价值进行预测。

缺陷:对处理能力要求高,存在隐私安全问题。
什么是大数据,大数据为什么重要,如何应用大数据
空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。

❷ 大数据时代 让决策者更聪明

大数据时代:让决策者更聪明
“大数据”作为时下最火热的IT行业词汇,随之数据仓库、数据安全、数据分析、数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。
拥有哈佛大学、牛津大学、耶鲁大学和新加坡国立大学等多个互联网研究重镇任教经历的维克托·迈尔·舍恩伯格被誉为“大数据商业应用第一人”,维克托最具洞见之处在于,他明确指出大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。
海量数据中的商业机遇
“可能感兴趣的人”“猜你喜欢”“购买此商品的人还购买了……”在你刷微博、网上购物时,经常会在相应的位置上见到如上提示。这些看似简单的用户体验背后,其实正孕育着被誉为“新油田”的大数据产业。
美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便可以翻一番,而目前世界上90%以上的数据是最近几年才产生的。这些数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
虽然大数据目前在国内还处于初级阶段,但是商业价值已经显现出来。首先,手中握有数据的公司站在金矿上,基于数据交易即可产生很好的效益;其次,基于数据挖掘会有很多商业模式诞生,定位角度不同,或侧重数据分析。比如帮企业做内部数据挖掘,或侧重优化,帮企业更精准找到用户,降低营销成本,提高企业销售率,增加利润。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2017年,此数据预计会上涨到530亿美元。
新创公司进入数据服务领域存在三大挑战:一是有无全面开发技术的能力及实力;二是有无足够多的钱,做数据服务需要很多基础设施、海量数据的存储、计算等,这些都需要有硬件投入;三是要跑得比大公司快。
“大数据的前景大方向是符合趋势的,但具体产品和数据处理能力,可能是最终成败的因素。如何获得大量数据,数据的质量、相关性以及是否有好的处理能力和技术,最终应用的方向是商业化的关键。”一位分析人士如此表示。

❸ 大数据时代带来更理性、更可靠的决策

大数据时代带来更理性、更可靠的决策_数据分析师考试

究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?在我们寻求对这些重要问题的解答时,牛津大学网络学院互联网研究所教授维克托·迈尔-舍恩伯格出现在我们的视野中;希望我们对他的采访,可以帮助读者们找到这些疑问的答案。

最近一段时间,“大数据”的热潮席卷全球,正如美国《福布斯》杂志所说的那样,如今,在浏览新闻网站或者参加行业会议时,想看不见或听不到“大数据”这个词几乎不可能。去年,美国6个联邦政府部门宣布将启动“大数据研发计划”,投资超过2亿美元以改进从海量和复杂的数据中获取知识的能力。同时,我国科技部发布的“‘十二五’国家科技计划信息技术领域2013年度备选项目征集指南”也把大数据研究列在首位。眼下召开的全国“两会”上,有全国人大代表提出要把发展“大数据”上升为国家战略。

究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?眼前对“大数据”的关注度是否已经过高了呢?在我们寻求对这些重要问题的解答时,英国牛津大学网络学院互连网研究所教授维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)出现在我们的视野中,讨论“大数据”,他如果不是最合适的人选,也起码是合适人选之一。

20多年来,维克托一直致力于网络经济、信息与创新、信息监管、网络规范与战略管理的研究。还在“大数据”这一概念众说纷纭时,维克托就已进行了系统深入的研究,2010年,他在英国《经济学人》杂志上和数据编辑肯尼思·库克耶一起,发表了长达14页的大数据专题文章。称他为最早洞见大数据时代发展趋势的数据科学家之一,并不为过。

《经济学人》说,在大数据领域,维克托是最受人尊敬的全方位发言人之一;美国《科学》杂志说,若要发起一场关于这个问题的深入讨论,没有比他更好的发起者了。

除了理论研究以外,维克托还非常接近实战世界,早在上大学期间,他就先后成立了两家数据安全和制作反病毒软件的公司,而在他写就的《大数据时代》一书中,那些最前沿、最崭新的大数据应用案例,都得益于他多年来紧跟企业与商业应用的步伐。他的咨询客户中,不乏微软、惠普、IBM、亚马逊、脸书、推特、VISA等大数据先锋们。

目前,维克托还是欧盟互联网官方政策背后的重要制定者与参与者,尤为重要的是,他还任职过新加坡商务部、文莱国防部、科威特商务部等部门,特别熟悉亚洲信息产业的发展与战略布局。

希望我们通过电子邮件对维克托的采访,可以帮助读者们找到这些疑问的答案。

失去微观层面上的精确度,为的是获取宏观层面上的洞察力

文汇报:今天,“大数据”已经成为全球炙手可热的词汇,您是从何时开始关注它的?

迈尔-舍恩伯格:多年来,我一直致力于研究数据在信息经济的发展中所扮演的重要角色,我与肯尼思·库克耶(Kenneth Cukier,我的合著者)一起发布了一系列相关研究报告。大约三年前,在我自己组织的一次会议上,我俩都意识到“大数据”的存在已经不仅仅是一种炒作或者什么宏大的宣言了,而将实实在在地改变我们的工作、生活以及整个社会,于是,我们决定就此专题写一本书。

文汇报:那么在您看来,究竟什么是大数据时代?它和传统数据时代到底有什么差别?我们知道,像沃尔玛这样的公司早在多年前,就已经将大数据运用到了商业实践中。

迈尔-舍恩伯格:事实上,过去几个世纪以来,数据已经在科学家们制定决策的过程中扮演了一定的角色,而过去几十年间,这一做法又延伸到了一些公司的决策制定过程。但在大数据时代之前,数据是非常匮乏的,我们拥有的数据非常少。因此,我们的决策、我们构建的制度都是建立在这样一种数据匮乏的基础上。今天,一切变得非常不同,它体现在三个不同的方面,我们称之为“更多”、“更乱”和“相关性”。

文汇报:这三个特征也是您在《大数据时代》一书中非常强调的,它们甚至会颠覆我们过去的整个思维方式。您能否具体描述一下这到底是怎样的过程?

迈尔-舍恩伯格:好的。我所说的“更多”,是指围绕任何一个我们想要调查的特定问题,或者是需要我们回答的疑问,我们都可以比过去任何时候获取更多的数据。在大数据时代,我们可以利用海量的数据得到非常详尽的见解,这是传统方法所不能做到的。

可以这么说,大数据时代和传统数据时代的区别,就像分辨率在200万像素的旧数码照片,一下子提高到2400万像素那样。后者是一个非常非常大的文件,它可以提供更多细节。它可以让我们不断放大,看清楚小到颗粒状的细部,而具有较低分辨率的图像在这些细节方面就会非常模糊。

基因信息就是一个很好的例子。美国有一家叫23andMe的新公司提供个人的DNA测试分析,以发现一些疾病征兆。它的成本只有两三百美元,并提醒客户关注会发展成严重疾病的个人癖好。但是公司并不对每个客户的全基因组进行测序,而是针对已知特征的位点(经研究得知因某种疾病存在,而可能会出问题的DNA片段)进行比对。这意味着,当一个新的特征被研究发现时,23andMe公司就不得不再次对客户的DNA进行测序并建立更完整的档案。

苹果公司的史蒂夫·乔布斯尝试了非常不同的方法。他得了癌症后,就有了自己全部的基因密码,数十亿的碱基对测序。这花费了他超过10万美元的成本,但这可以让医生完整地洞察他的基因密码。每当药物由于乔布斯的癌症病变而失去有效性,他们就可以根据乔布斯特定的基因信息,寻找到有效的替代药物。遗憾的是,这也没有保住乔布斯的命,但是在这一过程中获得的数据,已经延长了他的生命。

由于技术创新,现在收集大量信息的成本变得越来越低。数年前,史蒂夫·乔布斯花费了六位数的金额才做到的事情,今天,不到1000美元就可以获得同样的服务了。

而“更乱”指的是,在小数据时代,因为数据是如此稀少,我们可以确保自己收集的每一个数据点都是非常准确的。相比较而言,大数据往往是凌乱和质量参差不齐的。但是,相比以高额代价来保证测量和收集少量数据的精确性,在大数据时代,我们将接受这种杂乱,因为我们通常需要的只是一个大方向,而不是努力了解一种现象的细枝末节。我们并不是要完全放弃精确性,我们只是放弃对精确性的热衷。我们失去微观层面上的精确度,为的是获取在宏观层面上的洞察力。

电脑翻译就是其中一个例子。1990年代,IBM的研究人员使用了一套非常精确的文件(加拿大议会记录的法语和英语版)来训练计算机。尽管计算机完全按照规则行事,但基于此的翻译质量却非常低。然后,谷歌在2006年开始介入这一领域,他们没有使用来自加拿大政府的几百万句标准翻译,而是使用随手可得的任何语言。他们在整个互联网上,利用数十亿页质量参差不齐的翻译,这些翻译不怎么标准——但是,这是一个小的权衡——他们能够使用的数据大大增加了,结果翻译质量反而提高了。与更少、更标准的数据相比,更多凌乱的资料完胜了。

“更多”和“更乱”组合到一起,产生了第三个特点,“相关性”,这也是大数据带给我们的最根本性的转变。我们的思维将从因果关系转向相关关系。至今为止的整个人类历史里,全世界的人们都在寻找事件发生的原因,探寻“为什么”。但我们对原因的执着探索往往带领我们走向错误的方向。所以,我们建议,在大数据时代,在许多情况下,我们可以仅仅寻找“是什么”,而不必完全理解“为什么”。例如,对于大数据的分析中,我们可以发现机器震动中一些非常微小的变化,这些变化表明机器将很快损坏。这使我们能够在部分机器零件报废前更换它们,这被称为“预测性维护”,它可以节省不少钱。但除了提高消费效率,“相关性”还可以做更多的事情。

比如对早产儿而言,即使他们长大成人,这些小宝宝仍旧是非常脆弱的,哪怕是遇上很小的感染。医生卡罗琳·麦格雷戈研究如何给这些婴儿最好的生存机会。使用大数据分析,每分钟可以搜集这些婴儿超过一千个数据点,麦格雷戈发现一个令人震惊的事实:每当这些早产儿出现非常稳定的标志时,他们的身体其实并不稳定,正在准备发病。有了这方面的知识,她就能在一个非常早期的阶段,确定婴儿是否需要药物治疗,从而挽救更多孩子的生命。

这是典型的大数据应用:医生麦格雷戈通过更全面的传感器,可以比以往搜集到更多的数据。她也接受,在这种情况下,并不是所有的数据都是准确的,从而也会导致她分析中存在不精确的可能。她把“为什么”这个问题放在一边,而用一种更务实的方式来提供帮助,她寻找“是什么”,这才是一个更好的预见感染的办法。

我们应该记住:大数据也可以挽救生命。

正确使用大数据,可以改善医疗、教育水平,促进人类发展

文汇报:大数据时代的到来,是否将会引领新一轮的产业革命?我们应该怎样客观地看待它的价值?

迈尔-舍恩伯格:大数据将会极大地改变社会生活的方方面面,但是它的价值能否等同于工业革命,这个问题目前还不好说。我个人猜想可能不能,原因是在19世纪初工业革命刚刚开始的时候,经济发展还处于非常低的水平上,所以相对来说,当时的人们从工业化过程中所能获得的生活水平的提升是非常巨大的,今天则非常不一样了。

我们真正想强调的是,大数据时代将推动我们从根本上改变企业的运作方式,以及我们在社会中的生活方式。大数据可以提高人类制定决策的能力,这种提高将是大幅度的。有了大数据,我们不是简单地提高经济效率,而是将挽救人类生命,延长我们自己的寿命。我们还将改善教育,促进发展。同样的道理,我们必须要小心。大数据同样也有“阴暗面”,正如我们在书中讨论的那样。如果应用错误,大数据也可能会化为一个强有力的武器。因此,我们必须确保正确使用大数据。

文汇报:您提到了大数据时代的“阴暗面”,它的到来会加深数字化鸿沟吗?

迈尔-舍恩伯格:大数据是一个强大的工具。因此,如果我们使用了错误的方式,它就可能会加深数字鸿沟。但是,如果我们用得好,相信大数据就可能会改善我们的生活,尤其是对那些不那么幸运的人而言。在这一点上,你可以把它想像成火、电或是抗生素等等。

文汇报:也就是说,您对大数据的价值认知,是基于一个更长时段的历史发展。

迈尔-舍恩伯格:如果以非常广阔的视角来看人类历史,我认为,人类一直想要理解世界。起初,许多人的“知识”是基于迷信和预感。知识的发展非常慢,人们需要非常深层次的思考,再通过实践进行检验,以确保知识是可用的。

但即使如此,我们的知识仍旧不是百分之百可靠的。例如,19世纪,路易·巴斯德一直在研究狂犬病疫苗,当时有一个被狗严重咬伤而染上狂犬病的小孩,父母担心孩子会死去,恳求巴斯德试试他的试验性疫苗。巴斯德照做了,孩子活了下来。随后的庆祝活动上,巴斯德以一个英雄的身份出现,他挽救了年轻孩子的性命。但是事实的确如此吗?今天,通过更深入的研究,我们知道,在被类似病狗咬到的儿童中,只有25%会感染狂犬病。所以75%的儿童哪怕使用了无效的疫苗,仍旧可以存活下来。这个故事告诉我们,我们以为自己生活在非常科学的世界中,但其实,我们拥有的数据非常少。一种新的治疗方法在被证明安全之前,需要做几十个甚至几百个医学实验来进行测试。但这仍旧太少,人们还是会受到伤害,因为我们依靠的数据太少。在大数据时代,我们可以告别数据匮乏,做出的决策将更理性,更基于事实,当然也更可靠。这是大数据时代带给我们的希望——更好的决策将会代替我们过往那些可疑的迷信和不可靠的人类预感。

文汇报:我们看到,麦肯锡公司2011年就发布报告推测,如果把大数据用于美国的医疗保健,一年可产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。“数据创造价值”的预测已经非常振奋人心。在您看来,大数据是否只是一门价值不菲的生意?

迈尔-舍恩伯格:不,大数据可以做更多。医疗方面,我们前面已经提过,只是分析一些重要的征兆,早产婴儿的感染出现明显症状的数小时前,医生就可以预见其生病。

同样,通过大数据分析,我们也可以找出学校教科书中的哪一部分对学生而言效果最好,也可以找出效果不好的部分。到现在为止,我们只能按照人类的预感,即教师自己判断学生在理解特定课程时是否会有疑问;但在大数据时代,我们有实际的数据可以参考,例如数据显示,电子书籍的某些页面被看过许多遍,因为它让学生感觉费解,据此可以调整我们的教材。这将从根本上改变教育。

或者举公共政策为例:Inrix是为智能手机提供导航软件的公司,它还提供实时的交通数据。之所以能做到这一点,是因为每个用户本身都成为了交通流量状况的传感器,把位置和速度信息都发回Inrix公司。这样一来,就可以给行进在交通堵塞路段周围的客户提供良好服务。Inrix公司有一大堆人们的活动数据,这还将有助于城市规划者了解大家的通勤模式,人们从哪里出发去工作,然后返回,并建设基础设施,如道路和铁路。这是最有效的应用。节省钱的同时,也有利于整个社会的管理。

文汇报:大数据对于商业决策、学术研究乃至国家治理的作用是显而易见的;但是对日常生活中的普通人而言,他们一定会从中受益吗?为什么在大数据时代,还是有不少人主张远离过载的信息和数据、返璞归真回到传统的社群生活之中呢?个人生活空间一定得从“简单平面”转变到“多维存在”才有意义吗?

迈尔-舍恩伯格:千百年来,人类已经经历的世界,都是在少量数据的基础上产生很多想法的世界。海员们结束长途航行后回来,地图才会在这一次经验的基础上进行重新绘制。这显然不会很精确。经过试验和犯错的周而复始,人类发展得非常缓慢。但是,当我们只有非常少的数据时,这是理所当然的结果。今天,我们有这么多的数据,难怪人类会不堪重负。但是,现在大数据可以提供帮助。如果人类不太善于消化这些过多的信息,大数据分析可以帮助我们将信息进行过滤,并进一步可视化,使我们能够轻松地加以使用。

人们尚未普遍具备与大数据时代相匹配的思维和技能

文汇报:有专家认为,大数据的未来是数据的APP(加速并行处理)而非基础构架;也就是说,仅仅有数据平台和基础构架是无法创造长期价值的。对此您怎么看?

迈尔-舍恩伯格:我们认为,大数据时代将至少需要和过去时代一样多的人的独创性。同时,巨大的资源才是未来时代的金矿,那些拥有这些数据资源的人将获得的回报是不可想像的。

文汇报:大数据时代,数据都是透明的,我们如何在保护个人隐私、商业机密和国家安全之间取得平衡?您所谓的“互联网遗忘运动”会是最佳药方吗?

迈尔-舍恩伯格:大数据时代所面临的挑战是,我们发现了隐藏在数据背后的价值,所以,保留这些数据,然后一遍遍地重复使用数据,往往成为一种明智的选择。同时,现行的保护个人隐私的法律,特别在西方,针对的是一个传统数据的世界,而不是一个大数据世界。这就需要我们在保护隐私的规则方面作出调整。我们建议,可以通过调整相关保护规则来实现这一目标,正像你所提到的,我们可以在一定时间以后,选择遗忘这些数据。

文汇报:大数据时代是一个海量数据有待处理的时代,同时又是一个海量无用信息需要删除的时代。这是否就是您在《删除》一书中强调我们要有所取舍的原因所在?

迈尔-舍恩伯格:是。在某种程度上,大数据本身也可以加强隐私的保护。因为如果有一百万个数据点,一个单独的数据点就不再那么重要了,这和传统数据时代非常不一样。随着时间的推移,忘记其中一些数据,并不会破坏整个大数据的运行和使用。

文汇报:大数据现在在全球究竟发展到了什么阶段?处理大数据的技术是否已经在全世界范围内普及?

迈尔-舍恩伯格:管理和处理大数据的技术都已经存在了,而且并不是非常昂贵。但是,有一样东西目前仍旧非常缺乏,那就是我们的思维——以理解数据背后所隐藏的巨大价值,以及提取这种价值的专门技能。今天,全球范围内,人们还没有普遍具备这种思维和技能,但是我相信,在未来,这种情况会发生改变。我们预计,世界各地的许多大学将提供针对大数据分析的课程,来培训大数据时代所需要的技能。

文汇报:历次产业技术革命,中国似乎都是学习者和模仿者;和上几轮产业技术革命不同的是,大数据时代,中国几乎和欧美发达国家同时开始技术研发,中国人口又居世界首位,将会成为产生数据量最多的国家。您看好中国在新时代的发展前景吗?中国在大数据时代是否有创新和领先的可能?

迈尔-舍恩伯格:是的,我们对此非常乐观。中国很可能成为大数据这一领域的先驱。在大数据时代,中国有很多优势:中国人都受过良好的教育,特别是在数学和统计方面(这是非常重要的)。中国是一个巨大的多元化社会,这会创造大量机会来创造大数据这一资源,并建立大数据应用。同样的道理,对于大数据的蓬勃发展,我们还需要相匹配的思维方式,有尝试新事物和持续创新的愿望,以实证事实来作为我们决策的依据。因此,和许多其他社会一样,大数据时代的确也会给中国带来非常大的变化。

以上是小编为大家分享的关于大数据时代带来更理性、更可靠的决策的相关内容,更多信息可以关注环球青藤分享更多干货

❹ 大数据时代如何进行企业伦理决策

建设大数据体系

要想利用大数据为企业进行决策,那么就要搭建一个完整的大数据体系。这个体系包含数据采集、整理、安全、数据分析和数据呈现。

1) 信息采集:一般的公司都已经有自己的系统,对于自己的企业都有了一定数据基础,对于企业的数据分析是一个基础。通过对于公司数据的整理采集,进行大数据分析。

2) 整理、安全:是指企业把好的、安全的数据进行整理。想要做好的数据分析,那么数据的质量是十分必要的。企业的数据分析,一定要有一个好的数据基础,才能为决策者提供有用的依据。

3) 分析、呈现:有大量的、质量高的数据之后,就是进行数据分析。一个企业有了高质量的数据,但是只是放在那里是无法体现其价值的,而进行数据分析,就是将数据的价值外显,通过分析、呈现为企业的决策者提供更好的数据依据,帮助决策者进行决策。

大数据对于企业决策的意义主要体现在以下几个方面

一是早期预警,二是实时感知,三是效果反馈。早期预警是根据大数据中显示的情况,根据数据的状况来帮助决策者进行决策分析。通过数据的分析来进行企业发展方向的决策。在中期可以进行大数据来描绘现实情况,帮助决策者制定计划。效果反馈是帮助决策者了解自己的决策方向是否正确,了解公司中存在的一定风险,帮助决策者做出提前的预防。

❺ 大数据给企业带来哪些决策

大数据对企业的作用:

1、实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器。

2、及时获取竞争对手的公开信息以便研究同行业的发展与市场需求。

3、为企业决策部门和管理层提供便捷、多途径的企业战略决策工具。

4、大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存储、挖掘的相关费用,是提高企业核心竞争力的关键。

5、提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。大数据对现代企业管理决策的影响有哪些
在目前的企业管理过程中,也逐渐对大数据时代下的企业管理与决策模式引起了足够
的重视。结合目前的实际情况来看,企业在内外部的管理模式上涉及到的内容不断增多,
从而呈现出了非常明显的复杂性,这对于企业决策以及决定性关系的数据分析工作带来了
一定的影响。文章主要针对大数据对现代企业管理决策产生的影响进行了深入的分析,并
结合实际情况提出了一些有效的应对措施,希望能为相关人员提供合理的参考依据。
已为您找到9篇相关文档
关键词:大数据;现代企业;管理;决策;影响
如今,各国经济之间实现了有效的结合,这就造成企业在发展过程中所面临的市场竟
争压力不断的增加,对于相关的企业而言,而竞争不仅体现在了企业之间,同时还体现在
了企业的管理方面。针对这种现象,对于相关的决策人员而言,一定要对目前市场环境进
行全面的了解,从而才能保证最终所做的决策具备一定的合理性。因此,一定要对大数据
的真正含义进行全面的了解,这样才有助于企业的管理人员做出正确的管理决策,从而促
]进企业可以在未来实现更加稳定的发展。

❻ 大数据分析的好处

大数据分析的好处就是可以在海量的数据信息中分析出一定的规律或者得到一些结论,从而为决策、行动提供数据分析参考依据。

❼ 大数据分析的目的及意义

大数据分析的结果可以给企业带来决策影响,也同时关系到企业的利益体现,大数据分析正在为企业带来了新的变化,主要是帮助企业分析客户数据,进一步掌握了解客户数据,以便做出有针对性的决策。那么,大数据分析的目的及意义有哪些呢?今天就跟随小编一起来了解下吧!

❽ 对政府服务和管理而言,大数据的大意义是什么

1、创新政府大数据管理思维。

第一,利用大数据形成政府管理的大数据思维。政府需要进一步开放数据信息,提升社会公众对于政府利用大数据技术创新自身管理范式的感知水平。

第二,政府需要强化数据信息整合的力度。政府需要进一步强化对于数据信息的整合与沟通,通过打通不同政府部门之间的“信息孤岛”,进而提升政府协同管理水平。

第三,利用大数据提高服务质量。当前我国政府亟需创建创新型与服务型政府,政府在提供公共服务过程中需要借助大数据相关手段针对社会大众的需求进行及时收集与回应,以此为基础来增强社会大众对于政府服务供给的获得感。

2、利用大数据手段升级政府管理手段。

第一,利用大数据技术完善政府管理专业的人才储备。我国政府管理部门应致力于引进大数据专业领域的人才。政府管理部门通过充实大数据人才队伍,有助于进一步提升政府管理决策的效率,同时鉴于大数据人才的稀缺性,政府不仅需要借助相关的优惠政策与扶持条件。

吸引大数据领域的高水平人才安家落户,更需要充分发挥自身的平台优势,致力于搭建以大数据研究为核心的产学研一体化研究联盟,通过大数据战略联盟的缔结,实现大数据管理人才的自给自足。

第二,利用大数据技术更新政府管理技术储备。

大数据的飞速发展对于网络空间安全提供了较大的挑战。我国政府需要从顶层设计的战略视角制定大数据网络安全保障机制,并进一步强化对于网络空间的管理与治理。

3、利用大数据理顺政府管理运行体系。

第一,利用大数据手段提升决策科学化水平。大数据技术在政策创新、公共危机治理以及行政监督等领域具有得天独厚的技术优势,决策者借助大数据技术能够促进对于大数据的深度挖掘和分析,进而对政府的各类管理事项作出科学预测,以提升决策的合理性与科学性。

大数据技术不仅能够进一步强化政府相关管理决策的指向精准性,同时借助大数据技术自身所蕴含的先进性与前沿性,能够为政府管理科学化提供有力支撑。

第二,借助大数据技术增强政府公共服务产出水平。政府在进行相关公共服务供给过程中,由于不能保障及时有效覆盖社会大众的全部需求,在大数据背景下政府应该通过致力于统一公共服务数据的格式与采集标准,持续推进公共服务资源的重新整合、竭力实现公共服务的均等化。

(8)大数据对决策者的意义扩展阅读

大数据趋势

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

趋势四:数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

趋势五:数据泄露泛滥

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。

在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。

参考资料来源:人民网-大数据与政府改革创新

❾ 大数据对企业决策的影响

大数据影响了企业主体的轿顷判断和决策,改变了企业的传统文化氛围和基础立场。

大数据理念的提出,影响了整个人类社会的发展。

对于企业来说,通过大数据分析系统的应用,不仅影响了企业主体的判断和决策,同时也改变了企业的传统文化氛围和基础立场,使企业在原始积累的程度上不断创新,催生出全新的发展领域和经营范围,这对于企业来讲无疑是有利的。

但是,如果企业管理者一味依靠大数据闭隐陆分析结果,势必也会影响自身的判断,使企业的携迹发展陷入僵局。

大数据时代的到来,企业的经营主体也应该审时度势,作出基本的战略调整规划。

大数据时代下企业传统管理模式存在的弊端

1.管理人员对大数据的缺乏正确认知。

2.企业对大数据分析技术的掌握能力较差。

3.专业数据分析人才缺失严重。

阅读全文

与大数据对决策者的意义相关的资料

热点内容
win7升级到专业版 浏览:282
qq飞车s车排行榜2017 浏览:671
揭示板网站怎么看 浏览:202
ps文件转换为ai文件吗 浏览:695
苹果升级到一半不动了 浏览:715
w7网络图标怎么设置 浏览:773
2016中国app应用创新峰会 浏览:680
用python写聊天程序 浏览:818
安装win10后是英文版 浏览:509
安卓支付宝停止运行怎么办 浏览:214
如何让文件整理的好 浏览:58
电脑评标专家库网站进不去怎么办 浏览:661
word怎么删除所有标点符号 浏览:423
86版本漫游带战神套 浏览:477
GT编程软件怎么下载和上传 浏览:356
泰坦之旅配置文件 浏览:606
文件柜批发价格如何计算 浏览:118
在北京学java哪里好 浏览:825
视频文件夹怎么起名 浏览:505
mac显示文件夹 浏览:651

友情链接