⑴ 金融服务领域的大数据:即时分析
近年来,“大数据”这个术语似乎比其他IT术语都更加流行。这不仅是术语的传播,而且还有广泛的应用,并且很多公司似乎都想赶上创新的列车。无论人们称之为“大数据”、“数据科学”、“工业4.0”或任何其他诱人的术语,人们谈论的都是一样的事物:数据。
目前,还没有对大数据的具体定义,但是企业可以根据5个V来测试数据,如果他们拥有所有数据,那么他们其实采用的就是大数据。
这5个V是:数量、速度、种类、准确性、价值。然而,一些企业只停留在原有的3 个V:数量、速度、种类。遗憾的是,这些测试被认为无利可图,因为企业可能会在详细的分析上投入大量投资,但获得的价值很少,因此,启动它毫无意义。
大数据并不是每个商业等式的答案。但是,并非所有类型的数据都可以存储或用作大数据,例如:金融服务提供商每天存储客户银行转账等内容。这些数据不能称为大数据,它是任何一方无法共享或分析的个人数据。金融服务提供商在用户注册时存储用户的ID,这两者都不能称为大数据。这是企业内部数据,应存储在专用的数据仓库服务器中。另一方面,支出交易无疑可以被视为消费者行为,而这是大数据。一旦分析了这些数据,金融公司就可以为用户提供更加个性化的服务,从而优化定价策略,提高客户保留率,获得竞争优势等。
金融服务公司必须实现完全数字化,才能从大数据中获得宝贵的见解。但是,国际金融服务商摩根士丹利公司的研究报告显示,金融服务业的数字化指数并不高。事实上,由于IT遗留系统和过时的业务流程,只有35%的金融服务公司实现了数字化。
企业需要通过利用大数据并将其集成到日常运营中来释放更多的机会,例如:
业务运营与战略 在普华永道公司于2018年发布的一份报告中,美国只有38%的消费者表示他们与之互动的员工了解他们的需求; 美国以外的46%消费者也这么认为。为了解决这一业务问题,基于分析的大数据技术可以促进以客户为中心的文化,从而增强客户体验,并提高运营效率。通过利用大数据,企业还可以建立自助服务平台,以吸引更多的财富管理投资者,使他们与需求保持一致,并将费用降至最低。将部门收集到的旧数据连接起来,并将其与新收集的数据集成,以获得最大的数据完整性,这将是一个很好的实践。
风险管理 信用评分平台是一项重要的服务,可以为全球数亿名客户提供服务。但现在必须将其提升到第二等级,以便对客户的财务状况提供全方位的视角。通过引入非传统指标,客户可以更公平地访问金融产品。此外,大数据产生的结果可用于建立数据模型,以识别捕捉股市欺诈者的模式,并提醒金融风险机构调查这些案例。积极主动的首席风险官将定期使用大数据,以确保企业符合他们严格的标准。
信息技术 近年来,由于大量的网络犯罪,在金融服务的IT系统中使用大数据已成为当务之急。为了发现欺诈并防止其发生,金融企业必须具有更高级的安全级别。构建预测性分析将使IT工作人员能够在网络攻击入侵系统之前进行预测。战略性地采取行动的IT工程师可以支持其他部门,为他们提供大数据即服务,其范围包括:为财务部门自动调节流程、为营销部门提供实时报告以增强其目标营销活动,以及在新服务发布前构建并行大数据模型以对其进行回溯测试。IT工作者是大数据游戏中的快乐参与者,他们有能力不断地支持跨部门的同事将暗数据转化为战略数据。 企业通常从大数据中探索分析其资产负债表。即使是声明健康运营的知名公司也经常分析他们的数据。事实上,这些是获得市场扩张、竞争优势和利润增长的公司。
如果企业能够授权大数据来回答业务问题,那么相同的大数据也可以为他们提供许多无可置疑的答案。事实上,大数据确定的答案的好处不仅仅局限于金融服务公司及其利益相关者,而且还将进一步扩大到其他领域,其中包括:
(1)无可争议的答案:客户细分 分析可以提供基于年龄、收入和人口统计的不同消费者行为的见解。因此,金融服务公司能够使客户产品与他们的定制需求保持一致,从而提高客户保留率。受益人:消费者-金融服务提供商。
(2)无可置疑的答案:定价策略 除了其他好处之外,大规模分析可以为消费者提供更好的价格。例如:消费者可以根据他们审慎模式,在汽车保险政策上获得具有竞争力的价格。金融服务公司能够使用大数据来发现住房的价格过高,并建议客户评估不同的报价,重新引导他们找到一个更合适的贷款人。受益人:消费者-竞争监管机构。
(3)无可争议的答案:金融包容性 正如欧洲银行管理局在2018年发布的调查中所提到的,受访者表示,大数据对更多金融包容性有着积极影响。相当一部分消费者无法获得金融服务,如:信用评分、住房融资等。 但是,通过涉及大数据,这些消费者可以使用可穿戴设备来改善他们的健康状况,因此可以获得更具竞争力和更便宜的保险套餐。拥有第一个金融产品将有助于他们融入金融生态系统。受益人:消费者-金融服务提供商-政府机构。
(4)无可置疑的答案:数据治理 使用金融服务大数据的良好做法将增加消费者对供应商的信任。如果金融服务公司分享他们的大数据技术,并解释他们如何以合乎道德的方式使用数据来改善他们提供的服务,并更好地满足消费者需求,他们将从中受益。随着消费者被个性化产品所吸引,他们会故意分享更多数据以获得更多个性化。受益人:所有上述受益人。
大数据的指导原则无处不在,但这并不意味着所有数据科学家都会得到相同的输出,因为每家公司都有不同的数据量,这取决于分析的执行深度。并非所有大数据都能提供有价值的成熟见解。因此,行业领导者必须确保投资自己的数据是有利可图的,并与他们的业务能力、人员技能和企业愿景保持一致。
当今的金融服务公司正在寻求通过利用大数据分析来竞争,他们在数据战略方面获胜的结构如下:
•管理:数据迁移、数据选择、数据存储、数据测试
•分析:数据结构、数据分析、机器学习、数据可视化
•成果:成功指标、业务决策、货币化、市场领导力
数据是一种永不贬值的有形资产,使用有价值的见解是一种面向未来的战略。因此,竞争是一个不断变化的目标,企业必须随时进行分析。
本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站,予以删除。发布者:rango,转转请注明出处: https://dataworkers.cn
⑵ 大数据金融存在哪些问题
法律分析:大数据金融存在的问题:
1、大数据对个人信息的大量获取导致了隐私和安全问题。
2、大数据技术不能代替人类价值判断和逻辑思考。
3、基于大数据开发的金融产品和交易工具对金融监管提出挑战。
法律依据:《中华人民共和国商业银行法》 第四条 商业银行以安全性、流动性、效益性为经营原则,实行自主经营,自担风险,自负盈亏,自我约束。商业银行依法开展业务,不受任何单位和个人的干涉。商业银行以其全部法人财产独立承担民事责任。
⑶ 大数据怎样影响着金融业
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。
二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。
三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。
应该怎样将大数据应用于金融企业呢?
尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。
(一)推进金融服务与社交网络的融合
我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。
(二)处理好与数据服务商的竞争、合作关系
当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力
首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。
(四)加大金融创新力度,设立大数据实验室
可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。
(五)加强风险管控,确保大数据安全。
大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。
⑷ 大数据金融存在的问题
一、大数据的定义分析:从生产来看,不需要特别的采集过程,因为监管要求、业务逻辑或者技术便利,具有“自生产”特征,比如搜索数据、交易数据等;从存-储来看,相对于传统数据库的数据规模,量变引起质变,需要新的数据库技术来支持存-储和访问;从使用来看,分析方法从基于概率论的抽样理论过渡到人工智能、统计学习等讲求高维、高效率分析技术。从行业细分角度,大数据金融业主要有大数据银行金融和大数据证券金融,分别和银行业务、证券业务相关。当然,保险业天然就和大数据相关。信用卡自动授信是典型的大数据银行金融。从银行角度是否应该对申请者授信、发授多少信用额度,是个重要问题。传统方式是人工审核申请资料,然后根据大致的档位发放额度或拒绝申请。但是当银行积累了足够多的用卡客户数据,可以把是否违约,违约概率,有效使用额度等指标作为被评价对象,然后调用与此相关的各种客户信息建立统计模型,自动计算授信结果。机器人投资是大数据证券金融的代表形式,股票价格波动受各种因素影响,传统的投资方式一般人工收集信息,手动交易。机器人投资可以建立多因素模型,自动选择股票或寻找交易时机,在适厅春当的风控模型下建立机器人投资云交易模式。再如,连接银行和证券的大数据不良资产评估。2005年,某国有不良资产管理公司开始尝试在海量数据基础上进行不良资产评估。原本银行信贷资产的评估都是基于会计模型,但是不良资产茄烂基本没扮纳耐有会计特征,很难用传统方法评估。因此,收集已处置资产和待处置资产样本进行对比,建立数据挖掘模型,可以方便评估待处置资产的价格。二、大数据金融的定义分析:金融业积累的大数据就是金融大数据,根据银行金融和证券金融本身的不同,这些数据也分成银行金融大数据和证券金融大数据。积累数据过程中,产生了数据采集、存-储、使用的相关工作和企业,这样就完成了金融大数据的产业链,但总体依然是信息技术产业链。目前,大数据服务平台的运营模式可以分为以阿-里小额信贷为代表的平台模式和京-东、苏-宁为代表的供应链金融模式。阿-里小贷以“封闭流程+大数据”的方式开展金融服务,凭借电子化系统对贷款人的信用状况进行核定,发放无抵押的信用贷款及应收账款抵押贷款,单笔金额在5万元以内,与银行的信贷形成了非常好的互补。**金融目前只统计、使用自己的数据,并且会对数据进行真伪性识别、虚假信息判断。**金融通过其庞大的云计算能力及数十位优秀建模团队的多种模型,为**集团的商户、店主时时计算其信用额度及其应收账款数量,依托电商平台、支付宝和阿-里云,实现客户、资金和信息的封闭运行,一方面有效降低了风险因素,同时真正的做到了一分钟放贷。京-东商城、苏-宁的供应链金融模式是以电商作为核心企业,以未来收益的现金流作为担保,获得银行授信,为供货商提供贷款。大数据能够通过海量数据的核查和评定,增加风险的可控性和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。虽然银行有很多支付流水数据,但是各部门不交叉,数据无法整合,大数据金融的模式促使银行开始对沉积的数据进行有效利用。大数据将推动金融机构创新品牌和服务,做到精细化服务,对客户进行个性定制,利用数据开发新的预测和分析模型,实现对客户消费模式的分析以提高客户的转化率。大数据金融模式广泛应用于电商平台,以对平台用户和供应商进行贷款融资,从中获得贷款利息以及流畅的供应链所带来的企业收益。随着大数据金融的完善,企业将更加注重用户个人的体验,进行个性化金融产品的设计。未来,大数据金融企业之间的竞争将存在于对数据的采集范围、数据真伪性的鉴别以及数据分析和个性化服务等方面。
⑸ 金融大数据应用面临哪些风险
1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。
⑹ 什么是大数据金融
大数据金融是通过大数据技术搜集客户交易信息、网络社区交流行为、资金流走向等数据,大数据金融了解客户的消费习惯,从而针对不同的客户投放不同的营销和广告或分析客户的信用状况。由于大数据金融数据是根据客户自身行为而搜集,大数据金融客观真实,因此,大数据金融针对客户制定的营销方案和偏好推荐也能做到精准化。
大数据金融的特点如下:
1、影响大。由于互联网加快了数据的传播,而金融大数据又属于个人核心隐私材料。在我国互联网金融发展现状下,信用体系尚不完善,互联网金融的相关法律还有待配套。互联网金融单位的违约成本较低,容易引发多种金融风险问题,造成群体性事件;
2、数量多。互联网金融大数据是获取的个人的金融行为数据,而这是属于个人数据中非常高频使用的部分。国内互联网金融服务企业获取的互金大数据已经达到数百PB,而且还在不断高速增长中;
3、速度快。互联网金融业务主要信息由系统处理,操作流程完全标准化,业务处理速度更快。在用户画像和信用数据库等金融大数据的支持下,经过数据挖掘和分析,引入风险分析和资信调查模型,一笔业务从申请到完成只需要几秒钟。
法律依据:《中华人民共和国数据安全法》第五条
中央国家安全领导机构负责国家数据安全工作的决策和议事协调,研究制定、指导实施国家数据安全战略和有关重大方针政策,统筹协调国家数据安全的重大事项和重要工作,建立国家数据安全工作协调机制。
⑺ 金融领域7大数据科学案例
金融领域7大数据科学案例
1 金融领域有哪些典型数据问题?
2 金融领域应用那些数据科学方法?
近年来,数据科学和机器学习应对一系列主要金融任务的能力已成为一个特别重要的问题。 公司希望知道更多技术带来的改进以及他们如何重塑业务战略。
为了帮助您回答这些问题,我们准备了一份对金融行业影响最大的数据科学应用清单。 它们涵盖了从数据管理到交易策略的各种业务方面,但它们的共同点是增强金融解决方案的巨大前景。
自动化风险管理管理客户数据预测分析实时分析欺诈识别消费者分析算法交易深度个性化和定制结论自动化风险管理
风险管理是金融机构极其重要的领域,负责公司的安全性,可信度和战略决策。 过去几年来,处理风险管理的方法发生了重大变化,改变了金融部门的性质。 从未像现在这样,今天的机器学习模型定义了业务发展的载体。
风险可以来自很多来源,例如竞争对手,投资者,监管机构或公司的客户。 此外,风险的重要性和潜在损失可能不同。 因此,主要步骤是识别,优先考虑和监控风险,这是机器学习的完美任务。通过对大量客户数据,金融借贷和保险结果的训练,算法不仅可以增强风险评分模型,还可以提高成本效率和可持续性。
数据科学和人工智能(AI)在风险管理中最重要的应用是识别潜在客户的信誉。 为了为特定客户建立适当的信用额度,公司使用机器学习算法来分析过去的支出行为和模式。 这种方法在与新客户或具有简短信用记录的客户合作时也很有用。
虽然金融风险管理流程的数字化和自动化处于早期阶段,但潜力巨大。 金融机构仍需要为变革做好准备,这种变革通过实现核心财务流程的自动化,提高财务团队的分析能力以及进行战略性技术投资。 但只要公司开始向这个方向发展,利润就不会让自己等待。
管理客户数据
对于金融公司来说,数据是最重要的资源。因此,高效的数据管理是企业成功的关键。今天,在结构和数量上存在大量的金融数据:从社交媒体活动和移动互动到市场数据和交易细节。金融专家经常需要处理半结构化或非结构化数据,手动处理这些数据是一个巨大的挑战。
然而,对于大多数公司来说,将机器学习技术与管理过程集成仅仅是从数据中提取真实知识的必要条件。人工智能工具,特别是自然语言处理,数据挖掘和文本分析有助于将数据转化为智能数据治理和更好的业务解决方案,从而提高盈利能力。例如,机器学习算法可以通过向客户学习财务历史数据来分析某些特定财务趋势和市场发展的影响。最后,这些技术可用于生成自动报告。
预测分析
分析现在是金融服务的核心。 值得特别关注的是预测分析,它揭示了预测未来事件的数据模式,可以立即采取行动。 通过了解社交媒体,新闻趋势和其他数据源,这些复杂的分析方法已经实现了预测价格和客户终生价值,未来生活事件,预期流失率和股市走势等主要应用。 最重要的是,这种技术可以帮助回答复杂的问题 - 如何最好地介入。
实时分析
实时分析通过分析来自不同来源的大量数据从根本上改变财务流程,并快速识别任何变化并找到对其的最佳反应。财务实时分析应用有三个主要方向:
欺诈识别
金融公司有义务保证其用户的最高安全级别。公司面临的主要挑战是找到一个很好的欺诈检测系统,罪犯总是会采用新的方法并设置新的陷阱。只有称职的数据科学家才能创建完美的算法来检测和预防用户行为异常或正在进行的各种欺诈工作流程。例如,针对特定用户的不寻常金融购买警报或大量现金提款将导致阻止这些操作,直到客户确认为止。在股票市场中,机器学习工具可以识别交易数据中的模式,这可能会指示操纵并提醒员工进行调查。然而,这种算法最大的优势在于自我教学的能力,随着时间的推移变得越来越有效和智能化。
消费者分析
实时分析还有助于更好地了解客户和有效的个性化。先进的机器学习算法和客户情绪分析技术可以从客户行为,社交媒体互动,他们的反馈和意见中获得见解,并改善个性化并提高利润。由于数据量巨大,只有经验丰富的数据科学家才能精确分解。
算法交易
这个领域可能受实时分析的影响最大,因为每秒都会受到影响。根据分析传统和非传统数据的最新信息,金融机构可以做出实时有利的决策。而且由于这些数据通常只在短时间内才有价值,因此在这个领域具有竞争力意味着使用最快的方法分析数据。
在此领域结合实时和预测分析时,另一个预期会开启。过去,金融公司不得不聘用能够开发统计模型并使用历史数据来创建预测市场机会的交易算法的数学家。然而,今天人工智能提供了使这一过程更快的技术,而且特别重要的是 - 不断改进。
因此,数据科学和人工智能在交易领域进行了革命,启动了算法交易策略。世界上大多数交易所都使用计算机,根据算法和正确策略制定决策,并考虑到新数据。 人工智能无限处理大量信息,包括推文,财务指标,新闻和书籍数据,甚至电视节目。 因此,它理解当今的全球趋势并不断提高对金融市场的预测。
总而言之,实时和预测分析显着改变了不同金融领域的状况。 通过Hadoop,NoSQL和Storm等技术,传统和非传统数据集以及最精确的算法,数据工程师正在改变财务用于工作的方式。
深度个性化和定制
企业认识到,在当今市场竞争的关键步骤之一是通过与客户建立高质量的个性化关系来提高参与度。 这个想法是分析数字客户体验,并根据客户的兴趣和偏好对其进行修改。 人工智能在理解人类语言和情感方面取得重大进展,从而将客户个性化提升到一个全新的水平。 数据工程师还可以建立模型,研究消费者的行为并发现客户需要财务建议的情况。 预测分析工具和高级数字交付选项的结合可以帮助完成这项复杂的任务,在最恰当的时机指导客户获得最佳财务解决方案,并根据消费习惯,社交人口趋势,位置和其他偏好建议个性化服务。
结论
对于金融机构来说,数据科学技术的使用提供了一个从竞争中脱颖而出并重塑其业务的巨大机会。大量不断变化的财务数据造成了将机器学习和AI工具引入业务不同方面的必要性。
我们认为,我们主要关注金融领域的7大数据科学用例,但还有很多其他值得一提的。 如果您有任何进一步的想法,请在评论部分分享您的想法。
⑻ 大数据在金融行业的应用与挑战
大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。
⑼ 金融大数据是什么
金融大数据是指收集海量非结构化数据,分析挖掘客户的交易和消费信息,掌握客户的消费习惯,准确预测客户的行为,提高金融机构的服务、营销和风控能力。
1、大数据金融主要体现在三个方面:一是数据客观准确匹配;二是交易成本低,客户群大;最后,数据及时有效,有助于控制风险。
2、大数据金融通过大数据技术收集客户交易信息、在线社区交流行为、资金流动趋势等数据。大数据金融了解客户的消费习惯,针对不同的客户推出不同的营销和广告,或分析客户的信用状况。
拓展资料:
1)因为大数据金融数据是根据客户自己的行为收集的大数据金融是客观真实的。因此,大数据金融为客户制定的回售方案和偏好推荐也能精准大数据金融匹配度高。大数据金融基于云计算技术 云计算是一种超大规模分布式计算技术,通过预设程序,大数据金融云计算可以搜索、计算和分析各类客户数据,无需人工参与。
2)大数据金融云计算技术降低了收集和分析数据的成本,不仅整合了碎片化的需求和供应,而且大大降低了大数据金融交易的成本,实现了跨区域的信息流动和交换,客户群也随之增长。在大数据金融模型中,互联网公司设置了各种风险指标,如违约率、延迟交货率、售后投诉率等,大数据金融收集的客户数据是实时的,因为其信用评价也是实时的。时间,有利于数据需求方及时分析对方的信用状况,控制和防范交易风险。
3)大数据,或称海量数据,是指所涉及的海量数据,无法通过主流软件工具进行检索、管理、处理和整理成信息,帮助企业在合理的时间内做出更积极的业务决策。 “大数据”研究院Gartner给出了这样的定义。 “大数据”需要一种新的处理模式,具有更强的决策力、洞察力和发现力和流程优化能力,以适应海量、高增长率和多样化的信息资产。