导航:首页 > 网络数据 > 课堂收集大数据

课堂收集大数据

发布时间:2023-05-31 20:01:20

大数据如何影响课堂教学

“大数据”(BIG DATA)这个词,是2008年在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》这本书中首次提出的。“大数据”指不用随机分析法(抽样调查)这样的捷径,而是对所有的数据(近似于全样本)进行分析处理的一种方法。

1.什么是我们身边的大数据?

“大数据”已经渗透到我们生活中的方方面面。比如我们打开手机淘宝,呈现在我们面前的界面是不一样的。它推送给我们的商品是不同的,而且这些商品往往真的能够抓住我们的需求和心理,这是为什么呢?

其实这就是大数据分析出的结论。

淘宝这个平台,对每一个浏览过商品的人,购买过商品的人,都进行了全数据分析,可以轻松获取我们的很多信息。

例如我们的性别、年龄、家庭成员、喜好、是否结婚、是否有孩子、孩子的性别,甚至可以细致到你是爱穿休闲类的服饰,还是喜欢小清新类的服饰,或者是职业装类的服饰等等。通过你的每一次操作,收集到了这些数据之后,它经过分析和处理,进一步推测出了你可能会订购的商品,从而推送给你,让你花更少的时间检索而要花更多的钱进行消费。

例如你购买了一些孕妇类产品,可能在不久之后,它就会推送相关联的一些婴儿用品给你。

而我们消费后的评价与反馈,又使得他们不断改进自己,例如不同卖家的钻石星级,或者清退一些不合格的卖家等等这些行为,就是淘宝对自身的调整。

这种互利互惠的双回路的运转模式,可以看作是卖家与买家间的一种良性的互动方式,而这种互动方式在传统的卖场里面是不可想象,也难以实现的。

2.什么是课堂教学互动方式?

课堂教学互动方式,则是指在课堂上,教师与学生之间的一种信息交流方式。

在传统的课堂中,师生之间的互动交流方式比较单一,上课就是教师在讲,学生在听,一种单方向的传导过程。

有人说,教师就是知识的搬运工,课堂上很少有师生之间的交流。

还有一种观念是,教师对学生提问,学生回答,就是师生互动。

显然,这种认识是肤浅的,这将使师生互动流于形式。师生互动的根本目的是要引导和培养学生的高阶思维。

因此,真正的师生互动应该定义为思维的碰撞、智慧火花的生发之源。

近些年来一直被提及的可汗学院的教学与学习方式,之所以受到关注的原因,恰恰就是它基于大数据分析,解决了课堂教学互动这个难题。

大数据之所以能实现课堂教学互动,是因为它具有三个主要特征:反馈、个性化和概率预测。

我们传统的课堂教学是一种单回路的学习,即教师给予,学生接受。我们对学生进行考核,然后对他们进行评价。

我们不会或者没有条件来通过学生的成绩来反思自己的教学内容或者方式是否是恰当的。

我们不能从学生身上获得真正有用的反馈信息来改变自己的教学内容和行为。

所以说,传统的课堂教学是一种单回路的方式,根本没有实现师生间的良性互动。

此外我们的教学内容在编排上,考虑的是处于平均水平的学生,而这种水平的学生其实在现实中可能根本是不存在的。

换句话说,我们的教学没有照顾到“好”学生,也忽略掉了那些“差”学生,甚至连我们认为的中等水平的学生,也是不存在的,因为他们是平均后虚构出来的群体。

所以,我们的教学根本没有针对学生做出个性化的设计,这是教育普及大众化不得不做出的取舍。

传统的教学是没有反馈或反馈较少(没有时间或实在照顾不到,分身乏术),没有个性化,从而更谈不上有概率预测的一种教学。

而大数据下的新的课堂教学互动方式,却可以改变这种状况。

1.参考案例

维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《与大数据同行——学习和教育的未来》一书,举了可汗学院的例子。

2004年,可汗是一个刚从哈佛商学院毕业一年的基金分析师,给自己的表妹辅导数学。

由于他们生活在不同的城市,因此,他在互联网上为她进行辅导,从此永远地改变了教育的世界。

他编写了若干程序来协助教学,这些程序能生成数学习题,并显示孩子们提交的答案是否正确。

同时,也收集数据,程序可以追踪每个学生的答对和答错的习题数量,以及他们每天用于作业的时间等等。

后来在此基础上创建的可汗学院,之所以可以闻名于世,就是因为它收集有关学生行为的数据,从中获取有用的信息来改变教学内容的设计,为每个学生定制个性化的学习方案。

可以说数据就是可汗学院运作的核心所在,大数据的支撑,互联网技术的飞速发展,使得相隔千里的师生之间形成了有效的课堂教学互动。

它改变了我们对面对面才能达成互动的传统认识。

此外,还有一个关于斯坦福大学吴恩达与他的机器学习课程的例子。

吴教授将课程放到了网上,他追踪学生与视频互动的行为。

在什么地方按了暂停键,什么地位按了重复键,在什么地方放弃了继续听课,他的目的不是督促学生学习,而是反思学生卡在了什么问题上,哪些教学内容难以理解,从而对课程进行调整。

例如,他发现学生本来都是正常的按顺序进行网上学习,但是很多学生在学习第7课时,都会去回看第3课的一个关于数学知识的复习课。

于是他发现,原来是因为第7课解决某个问题时,需要用到第3课复习到的一个数学公式,而很多学生并没有记住,因此他就对第7课时的教学视频做了改变,会自动弹出一个弹窗帮助学生来复习数学公式。

还有一次,他发现学生在学习第75课到第80课时,正常的学习秩序被打乱了,学生以各种各样的顺序反复观看这几节课。

他通过反复分析,发现学生的行为是在反复理解概念,于是他将这部分的教学内容制作的更加精细,更有助于帮助学生理解概念。

【 评价】

这是一个典型的大数据分析下,课堂教学互动变革实现了教学反馈的例子。

觉得我们传统的教学,只是通过每天判一判学生的作业,看一看他们的考试成绩,是无法得到这些动态的数据的,更无法得到改变我们教学内容与方式的有价值的信息。

于是我们的教学可能几年甚至几十年都在重复相同的内容和动作。因为我们不知道学生究竟是如何进行学习的。

2.参考案例

还有一个例子是关于“半岛大学”的暑期班项目,他们使用可汗学院的数学课程教授来自旧金山湾区贫困社区的中学生。

在课程一开始,一个七年级的女生的成绩在班里一直垫底,在整个暑期的大部分时间中,她一直是学得最慢的一个学生,但是在课程结束后,她的成绩是班上的第二名。

可汗对此感到好奇,于是调取了她完整的学习记录,查看她每一道习题和解题的时间,系统创建的图表对她学习进行的描绘,发现他很长时间都徘徊在班级的底部,直到在某个事件点上突然直线上升,超过了几乎所有的学生。

这充分说明,当学生以自己最适合的步调和顺序进行学习时,即使一个被看似没有能力的“差生”也是可以变为优等生的。

【 评价】

这是一个典型的大数据分析下,课堂教学互动变革实现了个性化教学的例子。

如果这个女孩放在我们传统的基于小数据的教学课堂上,几次考试的成绩都不理想,可能她就会被我们归类为“差生”,于是各种补习加各种辅导,完全打击了她的自信心,成绩的阴影甚至会影响到她的一生。

而可汗学院的课程,利用数据监控了她的所有的学习过程,时间是一个连续的变量,针对她的特点设计了适合她的习题,循序渐进,激发出了她最大的能量。

她完全根据这种个性化的定制,按照自己的学习节奏进行学习,不用去关注到其他人的学习进度与成绩。细思极恐,我在想我们的教育究竟扼杀掉了多少这样的人才?

我们真的应该好好认清大数据带给我们的课堂教学互动的变革,这种变革很多时候甚至不是技术上的,而是理念上的。

在反馈与个性化的基础上,大数据的更大的优势就体现在了概率预测这方面了。

例如我们可以对学生个体为提高其学业成绩需要实施的行为作出预测。比如选择最有效的教材、教学风格、反馈机制等等。

其实,在小数据时代,我们跟学生家长所说的某些建议,比如您的孩子应该加强数学这方面的学习,您的孩子适合去学文科等等这些建议,其实也不是肯定的事实,也只是概率性的干预。

因为可能根据老师所谓的经验,这个学生选择学习文科,将来考上一本的可能性更高。而大数据与过去最大的区别是,我们是通过对事物加以测量和量化,以更高的精确度说话。它的预测准确率更高。

比如,大学的选课方面,可以根据你以往的学习基础以及学习行为,预测出你选哪门课的通过率会更高,你未来的职业规划怎样进行会更加顺利等等。

大数据所实现的这种概率预测,似乎与课堂教学互动方式的变革没有直接的关系。

但是仔细分析不难发现,这种预测其实是师生间互动的一种延续,我们对学生的影响不只局限于课堂上,而是延续到了未来选择的层面上,使得互动交流更上了一个台阶。

1.利用数据反馈信息调整课堂教学策略

以高考备考为例:

上图是追踪某高中四年所有学生高考数学各知识点得分率的情况,我们可以看出对其中一部分知识点的得分率维持在高位。

这就说明学校一贯的培养策略与日常教学方法是正确的,只需要保持即可,无论教师还是学生不需要过于焦虑,因为大数据反馈的结果对未来教学效果有一定的预测功能。

2.关注学生的个性化发展

大数据不仅对规模庞大的数据进行全样本分析,得到一般规律,更重要的是很能体现出个性,它可以记录下每一个学生的变化,方便教师针对每一个学生调整课堂教学方式。

上图是大数据分析系统给出的某一个学生在一次考试中的情况,从图中可以看出,数学与物理是这个学生的优势学科,英语是这个学生最薄弱的学科,那么在进行改进策略制定时,要多听取英语老师的建议。

大数据可以帮助教师的课堂教学行为不像传统课堂那样,针对的是所谓的“平均水平”的学生授课,而是能照顾到每一名学生。

例如,利用信息技术监控学生的课堂测试与课堂练习情况,随时调取任意学生的过程进行点评,统计每一名学生过程中出现的问题,这样教师对课堂进程的判断不是根据经验,而是根据实际情况随时调整。

总之,课堂教学互动方式的变革,不应该只是技术层面上的变革,媒体技术,网络平台的建设已经非常的成熟了,我们需要的变革是组织变革,是思想的变革。

现在流行的微课、慕课(MOOCs)其实就是大数据渗透到教学互动领域冰山的一角,形式并不重要,重要的是隐藏在这些形式下的数据所反映出来的学生行为,以及反馈给教师的教学信息,从而引起他们的思考和改变,形成双向的回路,实现真正的“互动”,这才是大数据真正的价值。

大数据下的教师要成为“数据脱盲者”,我们需要通过读取数据来追踪学生的进步,通过概率预测解释什么是对学生最有效的学习。

我想这应该意味着我们需要建立一套完善的系统,在这个系统中,有数据处理的专家,有解读数据分析数据的分析师,有利用数据改善教学的教师。

只有在这个良性循环的系统中,才能真正实现课堂教学互动,呈现个性化的教学,让教育针对每一个孩子。

希望我们的教育和教学可以因为大数据而发生真正的变革。

② 大数据怎么收集

通过数据抓取和数据监测,整合成一个巨大的数据库——产业经济数据监测、预测与政策模拟平台

③ 大数据对高校教育的推动作用论文

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

;

④ 应对大数据教师当有“转化”思维

应对大数据教师当有“转化”思维
教育信息化带来了教与学方式的深刻变革,大数据等新技术已经与教师教育产生深度融合,在促进教师专业发展、助推教师教育教学全方位变革与创新发展过程中的巨大潜力也取得了教育界的共识。很多学校将课堂作为推动学校内涵发展的主阵地,通过信息化手段对教师进行课堂观察、数据采集和分析,得出测评结果,然后制定相应的提升措施,不断促进教师教学水平的提升。教师要有大数据转化的主动自觉目前,以大数据技术为核心的课堂观察方法与技术改变了以往单纯凭借个人价值观和个人经验的听评课方式,实现了基于数据证据链的课堂教学行为大数据的诊断与分析:这种方法首先对教师的教学模式、讲授、提问、理答方式、师生对话等课堂教学的关键环节和关键因素进行观察,通过信息化手段进行大数据采集和记录,然后进行基于大数据证据链的综合分析与评价,指出本次课堂教学的特征、优缺点等,或者会给教师一份课堂大数据分析报告作为反馈。对于教师而言,阅读一份课堂观察大数据报告的文本不难,而真正发挥大数据的作用,将从中抽离出的结论反向“落地”,使之进入课堂教学的操作层面,实现大数据与教学实践之间的融通,从而将大数据变成教师反思教学行为的依据、开展课堂变革的线索、改进和提升教学水平的抓手,为学校内涵发展提供源源不断的内生性资源,则需要教师建立起数据“转化”的思维。目前,信息化手段被广泛应用于学校的管理、教育教学等领域,对大数据的转化、把握和利用已是无可回避的大趋势。面对这一挑战,教师要在大数据转化的三个环节形成自觉:首先是大数据输入的自觉,即教师需要有一定的“数商”,即能对大数据敏感,并能进行大数据收集、分析等输入的自觉;其次是大数据加工的自觉,即在大数据输入之后,教师需要有意识地培养自己将大数据与教学实践进行有效勾连,并将大数据转化为教学方法、教学设计等的自觉;最后是大数据输出的自觉,即在教学经验、成果等的表达、推广层面,教师需要自觉形成有数据、有依据、有证据地进行表达的习惯,使数据化表达成为教师教育教学生活的常态。教师要有大数据转化的行动逻辑和实践载体无论是从大数据到教学实践还是从教学实践到大数据的转化,都暗含着各自的转化逻辑。如,课堂教学观察大数据是以一定的教学、评价等理论模型作为依据和行动逻辑,将教师直观的、具体的、生动的、感性的课堂教学行为以一种高度抽象、概括和理性的形式呈现出来。同理,教师要充分挖掘和利用大数据,也需要按照一定的逻辑,依托教学领域的各种理论或实践智慧,生成关于教学模式、讲解、提问、理答方式、师生对话等大数据的转化策略、方式、效果及评价。教师需要一定的载体,才有可能将从大数据中提取到的信息转化落地。从一个教学过程的全景来看,大数据转化有三个载体:教学设计。对大数据进行转化的一度解读在教学设计阶段。即教师在进行教学行动之前,根据从大数据中提取到的信息、自身教学风格和学情进行教学设计,通过大数据精准地定位一个教学设计的优势、短板主要困难和障碍以及和没有大数据做依据的教学设计之间的差异,从而规划好下一步行动的“蓝图”。教学过程。对大数据进行转化的二度解读在教学过程阶段。即教师按照教学设计进行教学的过程中,有意识地通过一定的策略、方法将从大数据中提取到的信息与教学实践过程中的导入、讲解、提问、理答、对话等环节相互作用,从而实现预期的教学目标。此外,教师也需要在教学过程中对课堂现场生成的大数据加以识别和提取,并能够在此基础上进行利用和创造,将其转化为新的大数据。教学反思。对大数据进行转化的三度解读在教学反思阶段。即教师要对自己基于大数据的课堂教学进行反思,即通过前后数值的对比,分析自身的教学行为、课堂教学效果等通过大数据的引领所产生的变化,对哪些是预期变化,哪些是生成性变化进行判断;对哪些因素和细节通过大数据的帮助由抽象变得具体、由模糊变得清晰、由不准确变得准确等进行记录。反思之后,教师还要能够带着这样的反思和改进措施进入下一个教学设计和教学过程中,形成不断依靠大数据来提升课堂教学品质的循环。教师要有大数据转化的理性判断使用信息化手段对课堂教学进行大数据收集和分析处理,是教育通过与技术的结合来推动自身改革和创新的进步表现。可以预测,这种半智能化技术手段在教育领域的应用范围还会持续扩大和深入。但是,事物都有两面性,教师在拥抱这种技术手段的时候,也要对其保持理性,保持批判,尽量做到有“理”有“限”有“度”。大数据使用的“理”。“理”就是不单就数据谈数据,而是同时注重把握大数据背后的原理或理念。每一套大数据的产生,都建基于一定的原理或理念模型,而这些模型产生的背景、条件和核心要素等,有可能和当下的应用环境有所差异。因此,教师在使用大数据的时候,要努力追求做到不但知其“术”——能读懂大数据,更知其“道”——能把握大数据背后的原理和理念,从而更加智慧和灵活地使用大数据。大数据使用的“限”。“限”就是为大数据的使用范畴划定边界。任何一种工具的开发都是针对某一种特定的对象,因此,每一种工具的适用性都是有限的,教师需要对测评方法与测评对象的适切性保持清醒的认知。大数据作为一种测评方法,适合何种性质的学科、何种类型的教学都需要教师进行审慎的判断。大数据使用的“度”。“度”就是理性看待大数据手段的工具价值,不过度倚重数据。以大数据为代表的量化测评方法只是众多教学测评手段中的一种。尽管这种方法因其精准性、直观性等优势在当前学校课堂中得到相当广泛的应用,但因为教学过程是一个涉及教学技术、教育价值、师生心理变化等显性、隐性要素交相作用的过程,教师依然要重视传统质性测评方法的价值和作用,使二者有机结合,共同促进教学品质的提升。

⑤ 数据采集|教育大数据的来源、分类及结构模型

一、 教育大数据的来源

教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。

教育大数据产生于 各种教育实践活动 ,既包括校园环境下的教学活动、管理活动、科研活动以及校园生活,也包括家庭、社区、博物馆、图书馆等非正式环境下的学习活动;既包括线上的教育教学活动,也包括线下的教育教学活动。

教育大数据的核心数据源头是“人”和“丛扰物”——“人”包括学生、教师、管理者和家长,“物”包括信息系统校园网站、服务器、多媒体设备等各种教育装备。

依据来源和范围的不同,可以将教育大数据分为个体教育大数据、课程教育大数据、班级教育大数据、学校教育大数据、区域教育大数据、国家教育大数据等六种 。

二、 教育大数据的分类

教育数据有多重分类方式。

从数据产生的业务来源来看,包括 教学类数据、管理类数据、科研类数据 以及服务类数据。

从数据产生的技术场景来看册郑念,包括 感知数据 、业务数据和互联网数据等类型。

从数据结构化程度来看,包括 结构化数据、半结构化数据和非结构化数据 。结构化数据适合用二维表存储。

从数据产生的环节来看,包括 过程性数据和结果性数据州困 。过程性数据是活动过程中采集到的、难以量化的数据(如课堂互动、在线作业、网络搜索等);结果性数据则常表现为某种可量化的结果(如成绩、等级、数量等)。

国家采集的数据主要以管理类、结构化和结果性的数据为主,重点关注宏观层面教育发展整体状况。到大数据时代,教育数据的全面采集和深度挖掘分析变得越来越重要。教育数据采集的重心将向非结构化、过程性的数据转变。

三、教育数据的结构模型

整体来说,教育大数据可以分为四层,由内到外分别是基础层、状态层、资源层和行为层。

基础层:也就是我们国家最最基础的数据,是高度保密的数据; 包括教育部2012年发布的七个教育管理信息系列标准中提到的所有数据,如学校管理信息、行政管理信息和教育统计信息等;

状态层,各种装备、环境与业务的运行状态的数据; 必然设备的耗能、故障、运行时间、校园空气质量、教室光照和教学进度等;

资源层,最上层是关于教育领域的用户行为数据。 比如PPT课件、微课、教学视频、图片、游戏、教学软件、帖子、问题和试题试卷等;

行为层:存储扩大教育相关用户(教师、学生、教研员和教育管理者等)的行为数据, 比如学生的学习行为数据、教师的教学行为数据、教研员的教学指导行为数据以及管理员的系统维护行为数据等。

不同层次的数据应该有不同的采集方式和教育数据应用的场景。

关于教育大数据的冰山模型,目前我们更多的是采集一些显性化的、结构性的数据,而存在冰山之下的是更多的非结构化的,而且真正为教育产生最大价值的数据是在冰山之下的。

参考文献:

教育大数据的来源与采集技术  邢蓓蓓

⑥ 大数据对教育教学的作用

数据(data),一般而言是指通过科学实验、检验、统计等方式所获得的,用于科学研究、技术设计、查证、决策等目的的数值。通过全面、准确、 系统地测量、收集、记录、分类、存储这些数据,再经过严格地统计、分析、检验这些数据,就能得出一些很有说服力的结论。大规模、长期地测量、记录、存储、 统计、分析这些数据,所获得的海量数据就是大数据(big data)。在制作大数据时,需要严格的方案设计、变量控制和统计检验等,不然所获得的大数据就是不全面、不准确、无价值或价值不大的。

在教育特别是在学校教育中,数据成为教学改进最为显著的指标。通常,这些数据主要是指考试成绩。当然,也可以包括入学率、出勤率、辍学率、升学 率等。对于具体的课堂教学来说,数据应该是能说明教学效果的,比如学生识字的准确率、作业的正确率、多方面发展的表现率——积极参与课堂科学的举手次数, 回答问题的次数、时长与正确率,师生互动的频率与时长。进一步具体来说,例如每个学生回答一个问题所用的时间是多长,不同学生在同一问题上所用时长的区别 有多大,整体回答的正确率是多少,这些具体的数据经过专门的收集、分类、整理、统计、分析就成为大数据。

分析大数据助力教学改革

近年来,随着大数据成为互联网信息技术行业的流行词汇,教育逐渐被认为是大数据可以大有作为的一个重要应用领域,有人大胆地预测大数据将给教育带来革命性的变化。

大数据技术允许中小学和大学分析从学生的学习行为、考试分数到职业规划等所有重要的信息。许多这样的数据已经被诸如美国国家教育统计中心之类的政府机构储存起来用于统计和分析。

而近年来越来越多的网络在线教育和大规模开放式网络课程横空出世,也使教育领域中的大数据获得了更为广阔的应用空间。专家指出,大数据将掀起新的教育革命,比如革新学生的学习、教师的教学、教育政策制定的方式与方法。

教育领域中的大数据分析最终目的是为了改善学生的学习成绩。成绩优异的学生对学校、对社会、以及对国家来说都是好事。学生的作业和考试中有一系 列重要的信息往往被我们常规的研究所忽视。而通过分析大数据,我们就能发现这些重要信息,并利用它们为改善学生的成绩提供个性化的服务。与此同时,它还能 改善学生期末考试的成绩、平时的出勤率、辍学率、升学率等。

⑦ 如何通过抓取教育大数据来深化课堂教学改革

现代信息技术的发展为大数据的收集和分析提供了无限的可能,大数据时代的这一趋势也对教育产生了巨大的影响:一方面,在科技理性的指导下,通过多维度收集学生行为的数据并进行模型建构,可以对学生的学习行为进行预测;另一方面,大数据时代的人文主义转向使人们更关注教学活动的适应性,教育大数据的挖掘和利用可以更好地实现适应个人需求的定制化教学。

国际数据公司(IDC)认为大数据时代数据有4大特点——数据的规模大、价值大、数据流转速度快以及数据类型多。大数据的挖掘和利用对教育——特别是课堂教学——产生着深远的影响。学习科学家索耶认为:越来越多的学习将经过计算机中介发生, 并产生越来越多的数据,我们有必要运用这些数据分析什麼时候有效的学习正在发生。所以数据挖掘可以用於探究行为与学习之间的关系,如学习者的个体差异与学习行为之间有何关系,不同行为又会导致何种不同的学习结果等。2012年美国发布《通过教育数据挖掘和学习分析促进教与学》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大数据时代教育数据的特点:具有层级性、时序性和情境性,其中数据的层级性指,既收集教师层面的数据也收集学生层面的数据,既收集课堂数据也收集活动数据,为後期模型的建立提供了多维度的资源;数据的时序性是指,数据是实时的、连续的,为材料的前沿性提供了保障;而数据的情境性是指,数据是基於真实情境脉的,保证了模型的信度。

大数据技术能够促进以学生为本的学习,数据不仅仅是科技理性指导下收集数据和拟合成模型,并针对学生的群体行为做出预测判断,还可能在固有模型的基础上,通过诊断学生在课堂中的行为表现,对固有模型进行修改,使课程内容更加适合学生的长尾需求,实现个性化教学。大数据的利用可以支持对教育活动行为的建模预测,还可能支持教育实践中的适应性教学。前者是後者的基础,後者是前者的深化。

建模与预测导向的大数据应用

大数据时代数据促进教育变革的方法之一是收集和分析处理数据,并进行预测。现如今,由於数据记录、存储与运算的便捷性,海量的、多层次的数据可以便捷地加以收集,由随机抽样带来的误差因此减小,建模和预测可以基於全数据和真实数据,因而就更为精确。大数据时代通过探求海量数据的相关关系获得盈利的最成功的案例是亚马逊的市场营销,亚马逊收集读者网上查阅行为和购买行为数据,建立读者偏爱阅读模型,预测读者购买的群体行为,实现书籍的推荐。近几年,教育研究的对象逐渐关注学生的学习行为,其背後是一种学习观的转变,学习被视为一种识知的过程(knowing about),识知是一个活动,而不是将知识作为一个物品加以传递。识知总是境脉化的,而不是抽象的和脱离於具体情境的。识知是在个体与环境的互动中交互建构的,而不是客观准确的,也不是主观创造的。所以,学生的行为活动数据被认为是可以反映学生在学习过程这一情境化的动态变化进程中的情况。海量、多层次、连续的行为数据在收集後被拟合成模型,实现预测,如学习管理系统(LMS)的运用。然而,由於建模和预测依赖的基本原理为数理统计,其预判对象主要是学生的群体行为。

1.案例分析

学习管理系统(Learning Manage System)简称LMS,是基於网络的管理系统平台,用於监控学生学习活动行为,识别和预测学困生(student at-risk),并为其提供相应的帮助。大多数LMS包括5个部分:有和课程相关的学习资料、用於确保学生提交作业与完成测试的评价工具、用於沟通的交流工具(如邮件、聊天室等)、用於确保教师记录和存储学生的学习活动并发布活动截止日期的课程管理工具、用於帮助学生学习回顾和跟踪学习进程的学习管理工具。在高校大量使用的BB(Blackboard)平台就是一个常见的学习管理系统。系统记录了学生参与选修的网上课程的种类、在线时长、阅读和浏览的文章数量,反映学习者的学习行为。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列颠哥伦比亚大学通过分析5个本科班级使用BB平台选修生物课的数据,建立了预测模型。平台记录了学生课程材料的使用情况、参与学业交流情况和完成作业提交和考试情况。大数据时代教育数据记录的层级性在这裏充分显现,课程材料的使用包括记录在线时长、邮件的阅读时间、邮件的发送时间、讨论信息的阅读时间等。参与学业交流记录了发布新讨论的时间、回复讨论的时间、使用搜索工具所花的时间、访问个人信息的时间、文件的浏览时间、浏览谁同时在线的时间、浏览网页连结的时间等等。评价模块记录了评价的阅读时长和提交评价的时间等。通过应用统计工具描述散点图,发现了在LMS记录下学生在线时长和学业表现呈相关关系。在进行多元回归时,研究者发现,学业成就处在後四分之一的学生在线时间略长於平均时间,而学业成就处於前四分之一的学生的在线学习时间低於平均水平。紧接着,研究人员为了作出预测,利用逻辑斯特回归生成了一个预测模型,通过收集学生的新的行为数据,预测学生是否处於真正参与了学习活动,并得出如下结论:讨论举行的次数、邮件信息发送量和测评的完成情况这三个维度构成的模型可以预测学生的学业水平情况。

大数据时代,通过探求学生行为与学业水平之间的相关关系,建立模型,实现预测,能够对课堂教学产生重要影响。然而,数据建模过程中,为了保证模型的效度与信度,极端个别数据被处理,使模型只能实现群体行为的预测,不能针对学习者个体实现定制化和个性化。

2.建模与预测的不足

数据建模与预测的背後充分体现了实证主义的思想和方法。19世纪上半叶,以孔德为代表的社会学家提出了实证主义的基本信条:利用观察、分类,探求彼此的关系,得到科学定律。实证主义的哲学思潮到20世纪60年代,演变成一种科技理性,实践知识逐渐染上了工具性的色彩,专业活动存在於工具性的解决问题之中,所有的专业活动都被视为厘定目标、套用已知的方法解决问题的过程。这一期间,大量的学科被系统地整合发展,甚至包括教育学和社会学这样的「软科学」。用证据解决未知的问题,用数据预测未来一时成为潮流。

学生活动行为数据的建模尤其侧重体验实证主义的思想,模型注重成功教学行为的共性,忽视教师与学生群体的独特性需求时,科技理性的主导有可能使课堂教学被视为独立於真实境脉的模块,只要教学行为取得成功,就会被数据抽象化,形成模型,对学生群体行为产生预测。科技理性有赖於人们认同的共有目标,教学实践目标的厘定极其复杂,包含巨大的不确定性和独特性,甚至,由於社会角色的不同,还会带来价值冲突。一个稳定的、为所有人所认同的目标不复存在,依据科技理性精神和方法推理预测的行为模式并不可能满足每一个人的需求,教育变革在大数据时代下出现新的取向。

从数据模型到支持适应性学习

在数据建模的基础上实现教学的适应性是大数据时代促进教育变革的另一成果。数据建模及行为预测依旧属於科技理性指导下的行为模式,可能会造成忽视学生个性需求的现象,而个性化需求正是知识社会的重要特徵,个性化的教育也受到教育研究者、政策制定者和教育实践者越来越多的关注。教育系统设计专家赖格卢斯认为,教育投入没有达到效果的一个很重要的原因是忽视了社会的转型。「社会已经从工业社会步入了资讯时代,劳动力市场对人才的要求不再是工业时代在流水线上操作的工人,而是具有创新性思维、决断力强的知识性人才。」教学面临从产生清一色的劳工转向产生有判断力和适应性能力的人群。2010年,OECD的报告《The Nature Of Learning》中指出,适应性能力(adaptive competence)是21世纪核心竞争力,包括在真实的境脉中灵活并有创造力地使用有意义的知识和技能。吴刚在《大数据时代的个性化教育:策略与实践》中提出了个性化教育的必要性和必然性,指出「只有利用信息技术所提供的强大支持,才有可能真正实现个性化学习」。大数据时代的来临,正是个性化教育发展的一个良好契机。2012年,美国颁布了《通过教育数据挖掘和学习分析促进教与学》,提出大数据时代,通过收集在线学习数据,对数据进行分类和探寻数据之间关联的方式挖掘数据,形成数据模型。通过学生行为和模型的互动,形成适应性学习系统。概言之,我们可以以对行为数据的充分利用为基础,改变教学的内容和进度,构建适应性评价和教学系统,充分实现教育的定制化,满足学生的长尾需求。

1.案例分析:
适应性教学系统又称适应性学习系统,(Adaptive Learning Support System),简称ALSS系统,强调基於资源的主动学习,认为学习不是知识的传递,而是学习者的自我建构。自上世纪90年代以来,研究者开发了不少适应性学习系统,如1998年De Bra开发的AHA系统,2003年,Brandsford和Smith开发的针对任务型学习的MLtutor系统,以及近几年颇受关注的翻转课堂(Flipped Classroom Model)简称FCM系统。

学习者学习相关学科内容时,学习行为被记录跟踪下来,学生的学习行为数据被传送到後台,记录在学习者数据库内,作用於预测模块。预测模块通过改变内容传递模块,再次作用於学习者。在整个过程中,教师、教学管理者起干涉作用。

适应性学习系统是一个交互的动态系统,系统往往会提供给学生一些学习行为建议。奥地利针对学生的问题解决的过程设计了一个适应性学习系统。适应性学习系统的第一步是教育数据挖掘(ecational data mining),简称EDM。数据挖掘的过程包括数据收集、数据预处理、应用数据的挖掘和诠释评价发展结果。Moodle提出了CMS数据挖掘系统(Course Management System)。研究者先使用原始数据进行建模,第一步是原始数据的收集,原始数据大约包含2007年73名用户产生的28000活动例子,2008年97名用户产生的265000份解决问题的案例和2009年45名用户产生的115000个活动案例。除了记录学生解答问题时产生的数据,原始数据还收集了学生的信息、问题的信息和解决问题的步骤;在对数据进行分类後,归纳出问题解决的类型,利用很擅长拟合连续数据的Markvo Models(MMs)的一个子模型DMMs拟合了如上的连续性数据,通过添加判断学生学习行为的结果模型和一系列监控和调节模块,构成了整个面向问题解决的适应性系统。当学生使用这个模型时,模型会根据学生的行为数据为学生提供他们所偏爱的解决问题的过程与方法。

除了适应性教学系统,还有适应性评测系统。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一个计算机辅助的个性化网络学习测评平台,平台不提供课程设计和课程目标,而是一个教学工具。CAPA通过後台记录学生的基本资料,学生参与的互动交流、学业情况,针对学业课程中的疑难点,提供个性化的考试资源。

2.适应性转向的意义

在大数据时代,科技理性指导下的模型预判在面对结构不良的问题时显得应对能力不足。科技理性指导下的数据建模忽视学习的真实境脉,只能支持群体行为的预判,模型的推广可能会使人们忽视其实践成功背後的个体经验与具体情境,从而导致科技理性与哲学思辨对抗。然而,完全依靠哲学思辨和经验进行教学不仅不利於教育学科系统理论性的发展,也不利於课堂实践的管理与教师的培训。唐纳德·A.舍恩提出了一种适应性思维模式。他指出:「如果科技理性的模式在面对『多样』的情境时,是无法胜任、不完整的,甚至更遭的话,那麼,让我们重新寻找替代的、较符合实践的、富有艺术性及直觉性的实践认识。」适应性学习是在系统理论知识的指导下,针对个体差异,使学习内容和活动高度个性化的学习方式。

适应性平衡了理性与经验的两难,英国学者Hargreaves(1996)首次提出基於证据的教育研究向医疗诊断学靠拢。临床诊断学和教育的相似之处在於,他们都要面对变动不居、极其复杂的环境,在这样一个结构不良的系统中,充分意识到客体(患者或者学生)的独特性与共性,利用系统的专业知识解决问题。

Ralf St. Clair教授在参考医学临床实践研究的三要素後提出基於证据的教育研究的三要素——研究的证据、教育工作者的经验、学习者的环境与特点。其中,行为预测关注的是研究的证据,而适应性学习系统的建设则关注的是教育工作者的经验和学习者的环境与特点。

从预测行为到支持适应性教学的转向,是一种人文主义的转向,教育研究的重点从关注研究的证据走向关注教育工作者的经验与学习环境特点,关注以证据支持个性化学习的实践变革。证据不再是其在科技理性时代所处的指导决策的角色,而是被视作一种资源,教育工作者在大量的基於证据的课堂教学决策中找寻最适合自己特点和学生特点的方式,推进课堂教学流程。也就是说,大数据的更重要价值在於支持适应性学习,满足个性化学习和个性化发展的时代需要。数据的预测功能依赖於大数据收集数据的全面性与处理数据的便捷性,根据统计学原理对群体行为做出预测,一定程度上弱化了个体特徵和具体情境。其主要指向行为预判。而适应性是在模型与客体的交互作用上改变模型,如图3所示,数据的适应性运转模型比预测模型多了一个循环(loop until)系统,使其更加契合个人需求,其主要指向实践改进。预测是支持个性化学习的基础,而支持个性化学习是预测功能的深化和转化——从整体人群到个体学习者、从理论模型到实践策略的转化。

分析与启示

大数据时代由於数据量大,数据收集与携带便捷,使海量学生行为数据被挖掘、收集,通过数据建模对学习者行为的分析变得比前大数据时代更为全面和可靠。数据时代在数据的挖掘和预测上固然潜力十足,但是大数据时代更多的价值是满足学习者的适应性长尾需求,在预测行为的基础上,修改教学模式,使之个性化与定制化。从数据建模走向支持适应性教学,支持对象从群体转向了个人,对教育活动的影响从对行为的认识转向了教育活动的实践,从科技理性指导下的去境脉转向了基於真实情境的教学活动。

走向适应性,不仅改变人类行为方式,更重要的是改变了认知方式。前大数据时代人们在科技理性的指导下完全被数据证据左右(driven by the data),教师和学生、教育决策者和学校形成传统社会契约关系,当事人把自己百分之百地交给专业工作人员,而专业工作人员遵守契约,对当事人全心全意地负责,从而使专业工作人员享受至高无上的垄断性地位。大数据时代,教师不再是知识的控制者,他通过参与学生的学习活动,根据学生的先拥知识和认知特点、个性需求,不断地调整教学步骤、教学进度和难度。学生不用完全将自己有如病人交付给医生一般完全托付给教师。在学习的过程中,通过与教师的互动交流,在教师的协助下,成为自己学习的主体,控制并对自己的学习负责。由於教师精力有限,大数据时代下网络计算机辅助学习系统可以为教师和学生提供辅助指导的机会。

尽管如此,一方面,我们要拥抱大数据给我们带来的便捷的生活和高质量的教育,另一方面,我们需要保持警惕和防止因果关系和相关关系的误用,并且维护数据安全。

在推理方面,教育工作者需要警惕将相关关系和因果关系误用,以Leah P.Macfadyen教授的前述案例为例,BB平台在线时间的长短和学生的学业成就有相关关系,而非因果关系,成绩优异的学生在线时间低於平均在线时间,但不能说低於平均在线时间的学习导致学生成绩优异而要求学生减少在线学习时间。

此外,在信息安全方面,学生和教师的大量信息被收集和使用,在使用的过程中,必须制定相关私隐保护法,保证信息的安全,警惕数据滥用。学生的行为数据也不可以作为教师教学评优的依据,让大数据真正成为支持教学变革、提升教学效能、促进学生发展的手段,而不是控制教师和学生的工具。

⑧ 利用大数据教师在课前可以做什么

利用大数据教师在课前可以精准定位教学目标和重难点;采集学生预习数据;进行学情分析。

教育大数据的本质是对教竖兆师教学过程中产生的信息进行的数据量化,它的产生让教学从量的扩张转到质的变革。在传统教学时代,教师教学决策通常依据理论指导的演绎法和经验总结的归纳法。

根据教学过程的不同阶段,教学决策可分为教学前的计划决策、教学中的互动决策、教学后的评价决策。教师依据学情,对课前、课中及课后依据技术手段搜集到的数据信息进行研判和加工并决定接下来的教学决策,在此基础上引导学生行为。

在教育大数据的驱动下,对不同阶段采集到的数据信息进行分析研究可以探究教师教学的过程,实现课堂教学与教育大数据的融合,让教师在课堂教学中的决策具有科学性和有效性。

⑨ 大数据在教育方面的应用

大数据成为了这两年非常重要的一项技术,使用的地方也越来越多,在教育方面现在也有了很多的应用,下面就一起来看看大数据在教育中的使用。

1、个性化教育。通过运用大数据技术,教师可以关注学生个体的多方位的表现,可以通过对学生及时性的行为进行记录,使得数据有效整合,为教师提供真实个性的学生特点数据。

4、更新教育理念,创新教育思维。大数据时代下教育大数据扭转传统落后的教育理念与思维方式。在新时期教育领域到处充满了信息与数据,师生的一言一行以及学校的各类事物都能够转化为信息或数据。

随着智能化设备的广泛普及每位学生都可以运用计算机进行终端学习,有助于提高学生的学习积极性。

阅读全文

与课堂收集大数据相关的资料

热点内容
2602i升级胖ap 浏览:642
macbookair怎么关闭程序 浏览:485
有道机器人编程课怎么样 浏览:791
商业银行app如何查看银行卡号 浏览:522
贵港市直播app开发怎么样 浏览:674
iphone6画面同步电脑 浏览:801
adf上传文件 浏览:772
微信撩妹表情包 浏览:935
作息app 浏览:24
29星卡哪些app免流 浏览:842
如何查找历史地震数据 浏览:315
iphone6港版和国行哪个好 浏览:760
word录制新宏 浏览:939
官方航班app有哪些 浏览:836
jssubstring中文 浏览:463
读取小米路由器文件 浏览:739
win10玩孤岛惊魂4 浏览:844
微信jssdk配置 浏览:89
苹果系统光驱怎么存储文件 浏览:722
把文件夹发送 浏览:681

友情链接