导航:首页 > 网络数据 > 大数据整合方案

大数据整合方案

发布时间:2023-05-31 13:22:01

① 智慧农业大数据可视化管控平台建设方案

不可否认,说起大数据在金融税务等领域的表现确实是更加亮眼一些。目前也开始向医疗、制造业、能源等方面倾斜。烂帆而农业似乎鲜有耳闻有落地的项目。但其实,国家近年来也一直在推动和扶持农业大数据的发展。而大数据也实实在在会给传统农业带来翻天覆地的变革和变化。

1、监管更加透明公开

农业行业是具有时间属性和空间属性的行业,因此跟农业相关的数据呈现的状态是多而繁杂,其中它还贯穿了农业的整个产业链。包括:播种过程的种子、农药、化肥、气象、环境饥此雹、土壤、作物等,运输过程的农产品加工、市场经营、物流、农业的交易等。这样长线的流程下来,如果没有公开透明的监管很容易在中间环节出现纰漏和问题,大数扒哪据使得这个过程更加的公开并被监督。

2、使得农业更加高效

我们都知道大数据的诞生解决了很多问题,其中最明显的是要降低成本提高效率。通过农业产业链的快速整合,从育种等前端科学的研发应用速度,生产到产品端的流程的高效化,区域供需匹配的高效化,减少信息流和物流在不必要的环节打转,实现信息流和物流的高速匹配!提高效率是一个从上至下渗入内部的重要目的。

3、让决策更加及时智能

农业大数据会使得农业更加智能化!通过科技、自然、生产、消费、价格、信息等海量农业信息数据的挖掘,可以大大提高农业生产的智能化程度,未来农民将不会为种什么发愁、不会为怎么种发愁、不会为市场销路发愁,通过对消费市场的把控,生产高度订单化,生产的时候就已经卖出了,政府管理的决策也将智能化,而且政府管理应用的空间也越来越小,因为可以通过企业的商业行为或者各种公共平台来实现政府管理的部分功能,加强农业生产的有序性。

4、追溯及问责

关注农产品的物流可以进一步的防止疾病、减少环境污染和农作商可增加利益。物流的发达使农产品的供应链也越来越长,这让农作商对农产品的跟踪和把控的越来越紧张。大数据的介入让农作商能更加快捷、更加方便的提高运营质量和检测质量。同时,可以通过大数据分析技术和基因组工具来检测和发现以事物为传播载体的病菌传播规律,进而减少疾病。

亿信华辰作为一家专业的大数据方案提供商,已经为100多个细分行业提供成功的方案并覆盖智能数据产品全生命周期,农业方面的也有不少。云南省粮食局的省级粮食信息管理云平台就是其中一个例子,为实现省、市、县的物资储备和粮食的产量的趋势掌控分析,实现年趋势分析、流通总览、仓储管理仓储基础建设使用情况、仓储仓容的投资情况,粮食的购销与库存的实时监测,在供求的平衡和交易情况做出智慧分析,神州良实助力云南省粮食局搭建粮食和物资储备可视化平台,帮助云南省粮食局实现一站式全局掌控信息驾驶舱。

另外,亿信华辰为贵州农委打造的脱贫攻坚统计监测系统也是一个很好的例子,1、数据采集:建立扶贫数据采集系统;2、数据整合:完成扶贫大数据整合工作;3、大数据分析:建立扶贫大数据分析平台。面向政府决策、产业发展和公众服务,通过统一的农业产业脱贫攻坚大数据平台,支撑政府与企业、上级与下级、省内与省外数据的共享交换、整合关联及业务功能协作融合。

② 大数据的数据整合和资源共享技术有哪些

  1. 非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。

    简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
    Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:

    跨粒度计算(In-DatabaseComputing)
    Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。

    并行计算(MPP Computing)
    Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。

    列存储 (Column-Based)
    Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。

    内存计算
    得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。

③ Seurat4.0系列教程12:大数据集整合的方法

对于非常大的数据集,标准工作流程有时可能计算成本高得令人望而却步。在此工作流程中,我们可采用如下两种方法提高效率和运行时间:

主要的效率改进是使用了 FindIntegrationAnchors() 。首先,我们使用互惠 PCA (RPCA) 而不是 CCA 来寻找锚点。在使用互惠的 PCA 确定任意两个数据集之间的锚点时,我们将每个数据集投影到其他 PCA 空间中,并根据相同的邻近要求约束锚点。所有下游整合步骤保持不变,我们能够"更正"(或协调)数据集。

此外,我们使用基于参考的整合。在标准工作流中,我们识别所有数据集之间的锚点。虽然这给数据集在下游整合中同等的权重,但它也可能使计算变得密集。例如,在整合10 个不同的数据集时,我们需要执行 45 次不同的对比。作为替代方案,我们在此介绍了指定一个或多个数据集作为整合分析的"参考",其余数据集被指定为"查询"数据集。在此工作流中,我们不会在成对查询数据集之间识别锚点,从而减少比较次数。例如,在将整合10 个数据集将其中指定的 1 个数据集集成为参考时,我们仅执行 9 次比较。基于参考的整合可应用于log标准化或 SCTransform标准化的数据集。

可选的工作流程包括以下步骤:

总的来说,我们观察到标准工作流程和此处演示的工作流程之间惊人的相似结果,但计算时间和内存显著减少。如果数据集存在高度差异(例如,跨模式映射或跨物种映射),则只能使用一小部分基因来进行整合,您可以使用 CCA 得到更好的结果。

例如,我们将使用来自人类细胞图集的"免疫细胞图谱"数据,这些数据可以 在这里 找到。

获取数据后,我们首先执行标准化和变异基因选择。

接下来,选择基因用来后续整合,并在列表中的每个对象上运行 PCA。

由于此数据集包含男性和女性,我们将选择一男一女(BM1 和 BM2)用于基于参考的工作流程。通过检查XIST基因的表达来确定性别。

④ 大数据工程师进行数据平台建设 有哪些方案

【导语】数据平台其实在企业发展的进程中都是存在的,在进入到数据爆发式增加的大数据时代,传统的企业级数据库,在数据管理应用上,并不能完全满意各项需求。就企业自身而言,需求更加契合需求的数据平台建设方案,那么大数据工程师进行数据平台建设,有哪些方案呢?下面就来细细了解一下吧。

1、敏捷型数据集市

数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。

2、常规数据仓库

数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。

3、Hadoop分布式系统架构

当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、网络、淘宝等国内外大企,最初都是基于Hadoop来展开的。

Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。

4、MPP(大规模并行处理)架构

进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop
MapRece框架以及MPP计算框架,都是基于这一背景产生。

MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。

关于大数据工程师进行数据平台建设方案的有关内容,就给大家介绍到这里了,中国社会发展至今,大数据的应用正在逐渐普及,所以未来前景不可估量,希望想从事此行业的人员能够合理选择。

⑤ 大数据数仓建设性能优化方案

大数据数仓的性能优化主要围绕以下四个方面:

在数据仓库建设的过程中,我们不可避免的要执行数据任务,那么这些任务如何进行配置才会是最优的?如果任务调度配置存在问题,将会导致出现瓶颈任务,或者无法及时提供业务所需的数据,这时我们就需要首先从调度则中段方面来考虑,是不是有些任务的调度时间设置不合理?或者是不是有的任务的优先级设置不合理?

对于数仓的建模而言,其实可以分为3NF建模和维度建模,推荐使用维度建模方式,可以按照星型模型或者雪花模型架构的方式去建模。3NF建模方式或者实体建模方式的应用性会差一点,在很多时候其性能也会差一点,但3NF会避免数据的冗余,其扩展性会好一些。而维度建模会有一定的数据冗余,并且冗余程度会很高,但是对于上层使用者而言,其易用性要好很多,并且其查询的性能也会好很多,虽然牺牲了一定的可扩展性,但是仍然在可接受的范围之内。之所以在大数据的框架下推荐使用维度建模,是因为建模产生的数据冗余对于大数据离线数仓来说,存储的成本并不高,因为其都属于SATA盘的存储,这样的存储成本是很低的。
总之,在大数据框架下推荐大家使用维度建模,使用星型模型或者雪花模型建模的方式,这样无论对于后续的运维还是后续的数据使用而言,都是比较便利的,并且性能会好一些。星型模型其实就是中间一个事实表,周边围绕着一堆维度表,其结构会简单一些,使用比较方便,性能也比较好;对于雪花模型而言,维度表可能还会继续关联其他的维度表,这种方式就是雪花模型,它会略微比星型模型复杂一些。其实星型模型也可以理解为较为简单的雪花模型。这里推荐大家使用星型模型,当然如果业务非常复杂,必须要使用雪花型也可以使用。这是因为星型模型虽然有数据冗余,但是其结构比较简单,容易理解,而且使用起来只需要A传给B就可以了,不需要再关联一个C。
除了上述两个较大的关键点之外,还有一些需要注意的小点,比如中间表的使用。我们一般将数仓分为三层,第一层做缓冲,第二层做整合,第三层做应用。但是并不是严格的只能分为三层,中间可能会有一些中间表,用于存储中间计算的结果,如果能够利用好中间表则会增强数仓的易用性和整体的性能。中间表的使用主要在数仓的第二层里面,因为需要整合数据,但整合后的数据仍是明细数据,对于这些表而言,数据量往往会比较大,而且会有见多的下游任务依赖这个表,因此可以做一些轻度的汇总,也就是做一些公共的汇总的中间表,这样应用层可以节省很多的计算量和成本。此外,虽然建议使用中间表,但也要注意中间表的数量,因为中间表数量过多,就会有太多的依赖层级。
在某些业务场景下,我们还需要对宽表进行拆表,拆表的情况一般发生在该表的字段较多,而其中几个字段的产出时间较晚,导致整个表的交付时间也会延迟,在这种情况下我们可以将这几个字段单独拆出来处理,这样就不会因为几个字段影响其余业务的使用。
与拆表相对的情况是合表,随着业务的增多,可能会有多个表中存放类似的数据指标,此时,我们可以将多个表整合到一个表中,减少数据任务的冗余。

表分区的功能一定要合理利用,这对于性能会产生很大的影响,一级分区一般都是按照天划分的,建议大家一天一个增量或者一天一个全量来做。二级分区的选择反而会多一些,首先大家要烤炉是否建立二级分区,其次大家再选择二级分区的建立方式。培数二级分区比较适合于在where语句中经常使用到的字段,而且这个字段应该是可枚举的,比如部门名称这样的。这里还有一个前提,就是如果这个字段的值的分布是非常不均匀的,那么就不太建议做二级分区。

离线数仓的计算任务基本都是通过SQL实现,这里也只讲在SQL部分如何进行优化。我们平时在进行数据处理,数据清洗,数据转换,数据加工的过程中都会使用到SQL。对于大数据体系下孙誉的SQL的优化而言,主要集中在两个大的方面进行:减少数据输入和避免数据倾斜。减少数据输入是最核心的一点,如果数据输入量太大,就会占用很多的计算资源。而数据倾斜是在离线数仓中经常会遇到的,数据倾斜分为几种,需要针对性的进行优化。

对有分区的表,合理使用分区可以过滤数据,避免全表扫描,有效的降低计算的数据输入。

SQL支持只读取一次源数据,然后将其写入到多个目标表,这样就保证了只做一次查询。语法如下

当我们在使用join,Rece或者UDF时,先对数据进行过滤也能有效的提高任务的效率

当发生数据再Map阶段倾斜的情况,第一种处理方式反馈至业务层面,看能否通过业务层面的修改让kv值均衡分布,如果业务层面无法处理,那么可以调整Map的个数,也就是加大Map的计算节点,默认情况是每256M的数据为一个计算节点,我们可以将其调小,也就是加大Map处理的节点的个数,使得数据分割的更加均匀一些。

Join阶段的倾斜也是比较常见的,其解决方案需要分钟如下几种情况处理:

Rece倾斜可能的情况有以下几种:

总结一下,性能调优归根结底还是资源不够了或者资源使用的不合理,或者是因为任务分配的不好,使得某些资源分配和利用不合理。

⑥ 企业大数据处理解决方案有哪些

企业一般采用商业智能来对数据进行分析处理。
比如用于销售模块可以分析内销售数容据,挖掘市场需求;用于客户分析可以分析用户行为,精准营销;用于财务分析可以分析财务数据,预估风险之类的。
具体的比如通过商业智能系统FineBI平台,可以进行销售、回款、应收款、可售库存、推盘、动态成本、杜邦分析、资金计划等各类细分主题的分析,以地图、环比图、漏斗图等特征图表配以钻取联动显示,较好地从数据中观测销售过程出现的问题。
财务方面也可以通过FineBI建立绩效指标库和行业或标杆指标库作为财务分析的数据源,在绩效考核模型、投资评估模型、财务风险模型、经营分析模型的基础上分别建立资产主题、盈利主题、资金主题、收入主题、成本费用主题、存货主题等。通过这些分析主题对企业进行进度监控和经营预警,从而达到对企业战略的控制。

⑦ NET在大数据处理方面有哪些好的解决方案

大数据分析处理解决方案

方案阐述

每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。

数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。

原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。

所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。

大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。

用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。

解决关键

如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。

解决方案

多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。

实施收益

多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

系统实施

系统主要应用于负责信息管理的相关部门。由于互联网的复杂性,多瑞科网络舆情监测系统实施起来需要客户的配合。

⑧ 业界采用的大数据解决方案

勤智大数据平台

勤智数码依托十年的技术研发实力设计并开发出拥有自主知识产权的DeepOne大数据共享交换平台,是一个集数据接入、数据处理、数据存储、查询检索、分析挖掘等、应用接口等为一体

⑨ 大数据分析系统平台方案有哪些

目前常用的大数据解决方案包括以下几类
一、Hadoop。Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

三、Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来
四、Apache Drill。为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

阅读全文

与大数据整合方案相关的资料

热点内容
2602i升级胖ap 浏览:642
macbookair怎么关闭程序 浏览:485
有道机器人编程课怎么样 浏览:791
商业银行app如何查看银行卡号 浏览:522
贵港市直播app开发怎么样 浏览:674
iphone6画面同步电脑 浏览:801
adf上传文件 浏览:772
微信撩妹表情包 浏览:935
作息app 浏览:24
29星卡哪些app免流 浏览:842
如何查找历史地震数据 浏览:315
iphone6港版和国行哪个好 浏览:760
word录制新宏 浏览:939
官方航班app有哪些 浏览:836
jssubstring中文 浏览:463
读取小米路由器文件 浏览:739
win10玩孤岛惊魂4 浏览:844
微信jssdk配置 浏览:89
苹果系统光驱怎么存储文件 浏览:722
把文件夹发送 浏览:681

友情链接