导航:首页 > 网络数据 > 大数据下产

大数据下产

发布时间:2023-05-29 11:20:42

Ⅰ 什么是大数据产业

大数据概念包含几个方面的内涵吧
1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处专理。
2. 要求快属速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。
3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。

很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。

随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
大数据产业包括新兴的数据分析行业,或者厂商。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具

Ⅱ 作为大数据背景下的产物,共享单车大数据是如何采集的,又是如何储存和传输的

本发明涉及一种基于共享单车GPS大数据的数据处理方法,包括:将案件发生的实际地点转换成第一GPS信息;根据所述第一GPS信息一次筛选出距离该第一GPS信息预定距离D内的共享单车GPS记录信息,其中,所述共享单车GPS记录信息为每一共享单车使用时所产生的相关数据,其包括每一共享单车的编号、使用时的用户信息、使用时的GPS数据以及与每一使用时的GPS数据对应的时间点;根据案件发生的实际时间从一次选出的共享单车GPS记录信息中,二次筛选出距离该实际时间预定时间T范围内的共享单车GPS记录信息;以及获取二次筛选出的共享单车GPS记录信息中的用户信息,并根据所述用户信息辅助案件侦破。本发明还提供一种基于共享单车GPS大数据的数据处理系统
二十世纪以来,由于互联网行业的飞速发展,"信息化","智能化"成了当今社会炙手可热的重点词汇,不论是交通领域,医学领域,甚至是航空领域,都在追求产品的智能化,而大数据技术是实现智能化有效而准确的工具;自2015年北大学生创立ofo共享单车并投入校园使用至今仅仅3年左右的时间,共享单车已经成了人们最普遍的短距离交通工具,但随着共享单车的大量使用,很多运营与治理问题也逐渐显现,因此获取共享单车运营本身产生的海量数据,应用大数据技术来解决其自身问题成为共享单车能够持续发展的唯一出路.本文从大数据的基本概念出发,重点介绍了大数据在共享单车运营和治理方面的应用,并在文章最后提出了大数据在应用过程中所遇到的问题,阐述了了大数据技术对于共享单车发展的重要意义.

Ⅲ 大数据产品有哪些

问题一:目前大数据产品有哪些? 大数据产品的分类在狭义的范畴里,从使用用户来看,可以是企业内部用户,外部企业客户,外部个人客户等。从产品发展形态来看,从最初的报表型(如静态报表、DashBoard、即席查询),到多维分析型(OLAP等工具型数据产品),到定制服务型数据产品,再到智能型数据产品等。
普通报表型数据产品过于苍白、可视化能力有限,而多维分析型数据产品更适合于专业的数据分析师而不是业务或运营人员,使用局限性也越来越大,所为未来的趋势可能是定制服务式和智能式的数据产品。举个例子,像企业级的大数据产品商业智能正是此趋势下的衍生品,发展数年,像国外的SAP,IBM,Oracle厂商,国内的FineBI等都是代表。

问题二:国内真正的大数据分析产品有哪些 大数据产品是有很多的,例如微信的大数据平台,DD打车的平台。
基于数据挖掘技术的舆情监测系统为另外一个十分重要的产品。
很多 *** ,企业会采用。它的作用,简单来说,就是发现负面信息,收集情报,有价值信息。
实施后好处: 1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息2. 可对重点QQ群的聊天内容进行监测3. 可对重点首页进行定时截屏监测及特别页面证据保存4. 对于新闻页面可以找出其所有转载页面5. 系统可自动对信息进行分类6. 系统可追踪某个专题或某个作者的所有相关信息 7. 监测人员可对信息进行挑选,再分类8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报

问题三:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完......>>

问题四:国内真正的大数据分析产品有哪些 目前,大数据分析工具在金融服务、零售、医疗卫生/生命科学、执法、电信、能源与公共事业、数字媒体/精准营销、交通运输等行业都有着广泛的应用。

问题五:目前大数据在哪些行业有案例或者说应用? 1、体育行业预测
世界杯期间,谷歌、网络、微软和高盛等公司都推出了比赛结果预测平台。其中,网络在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,网络与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,网络推出的中小企业景气指数预测,应用网络海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。ruanyun/news/ryyc/n152.aspx

问题六:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有网络、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。

问题七:国内比较好的大数据 公司有哪些 你好,说的是什么领域?数据挖掘、数据研发、数据应用方面都有佼佼者。像商业智能领域的话,国内我比较了解的帆软,一开始做报表软件,做得很好,有比较深的行业基础,后来出的FineBI商业智能软件也延续了FineReport的精华,在行业内比较有代表性,具体的,有官网,可以去了解一下。

问题八:大数据产品主要是用来做什么的 大数据产品有很多,宽泛来讲,大数据产品的作用是对已有数据源中的数据进行收集和存储,在这基础上,进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。当这整个循环体系成为一个智能化的体系,通过机器实现自动化就是一种新的模式,不管是商业的,或者是其他。
而大数据能够实现的应用,可以概括为两个方向,一是精准化定制,二是预测。
精准化定制可以是一些个性化的产品,精准营销,比如互联网推广。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。可分为决策支持类的,比如典型的商业智能产品FineBI;风险预警类的,主要用于证券、银行、投资;实时优化类的,比如实时定价。

问题九:国内真正的大数据采集产品有哪些 大数据的应用分为两类
第一类:基于自身平台的数据采集,现在的三大互联网巨头等拥有大量用户数据,通过自身数据挖掘可以完成。
第二类:基于爬虫或者类爬虫技术,帮助企业, *** 采集网络 *** 息,也就是网络信息采集系统,乐趣的“乐”,思维的“思”
其主要应用在于:舆情监测,品牌监测,价格监测,门户网站新闻采集,行业资讯采集,竞争情报获取,商业数据整合,市场研究,数据库营销等领域。

问题十:大数据分析领域有哪些分析模型 IT监控类或者IT运维流程类的产品工具上线运行一段时间之后,一年会产生十几万、甚至几十万的海量数据,包括告警数据、工单数据等IT运维大数据,需要从这些海量数据中获取更有效、更直接、更有价值的分析数据,更快速、有效的提取有意义的决策依据同样需要工具系统来满足运维大数据的IT数据挖掘、IT数据钻取需求。 RIIL Insight目前是国内首款定位于IT管理领域的大数据决策分析系统产品,通过建立多维数据分析模型进行信息提取、统计分析并提出决策依据,是IT运维管理领域的BI。系统通过IT运营管理、IT部门绩效管理、可视化项目管理、资产管理、业务关系管理、供应商软件管理等自定义维度的运行数据进行分析,可快速获取运维管理各方面的直观准确数据,诊断分析问题根源,预判数据走势,洞察全局运维动态。

Ⅳ 什么是大数据产业

1、大数据产业的提出是我们对信息产业的更深层次的认识,“互联网”、“智慧城市”、“智能制造2025”其核心都在于数据利用,也就是外衣千百个,核心就一家。

2、大数据的产生和技术的迭代解决了许多先前信息化建设解决不了的问题,先前几十年的建设主要的还是完成了信息采集和标准的工作,新兴大数据技术的出现让大规模的数据处理成为现实。

3、大数据带来了新的经济增长极,数据为王,给大家提供了弯道超车的机会。

Ⅳ 大数据时代的产业崛起

越来越多的政府、企业等机构开始意识到数据正在成为组织最重要的资产,数据分析能力正在成为组织的核心竞争力。具体有以下三大案例:
1、2012年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。奥巴马政府将数据定义为“未来的新石油”,并表示一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来,对数据的占有和控制甚至将成为陆权、海权、空权之外的另一种国家核心资产。
2、联合国也在2012年发布了大数据政务白皮书,指出大数据对于联合国和各国政府来说是一个历史性的机遇,人们如今可以使用极为丰富的数据资源,来对社会经济进行前所未有的实时分析,帮助政府更好地响应社会和经济运行。
3、而最为积极的还是众多的IT企业。麦肯锡在一份名为《大数据,是下一轮创新、竞争和生产力的前沿》的专题研究报告中提出,“对于企业来说,海量数据的运用将成为未来竞争和增长的基础”,该报告在业界引起广泛反响。
IBM则提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
在国内,网络已经致力于开发自己的大数据处理和存储系统;腾讯也提出2013年已经到了数据化运营的黄金时期,如何整合这些数据成为未来的关键任务。
事实上,自2009年以来,有关“大数据” 主题的并购案层出不穷,且并购数量和规模呈逐步上升的态势。其中,Oracle对Sun、惠普对Autonomy两大并购案总金额高达176亿美元,大数据的产业价值由此可见一斑。

Ⅵ 大数据下如何做好电商运营

首先,要了解什么是大数据营销?
大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人。
大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
关于大数据营销的价值有哪些?
1、基于需求定制产品
如果想在行业有一席之地,只能增加产品的附加属性,找到产品的独特卖点。
2、开展精准推广活动
那么在大数据下如何做好电商营销?
大数据下人群定向技巧有哪些?
1、大数据下买家特征分析
1>账号等级;2>买家购物习惯;3>买家性别;4>买家大网时间;5>买家地域;6>;买家消费层次;7>;年龄层次;8>购物终端;pc还是移动......
2、大数据下产品属性分析应用
所有产品都是为顾客服务的,所以在选产品前,必须明确顾客需求买家属性分析,图片设计一定要场景、情景式营销。
契机
第一,用户行为与特征分析。只有积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。这一点,才是许多大数据营销的前提与出发点。
第二,精准营销信息推送支撑。精准营销总在被提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。。
第三,引导产品及营销活动投用户所好。如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品生产即可投其所好。
第四,竞争对手监测与品牌传播。竞争对手在干什么是许多企业想了解的,即使对方不会告诉你,但你却可以通过大数据监测分析得知。品牌传播的有效性亦可通过大数据分析找准方向。例如,可以进行传播趋势分析、内容特征分析、互动用户分析、正负情绪分类、口碑品类分析、产品属性分布等,可以通过监测掌握竞争对手传播态势,并可以参考行业标杆用户策划,根据用户声音策划内容,甚至可以评估微博矩阵运营效果。
第五,品牌危机监测及管理支持。新媒体时代,品牌危机使许多企业谈虎色变,然而大数据可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警,按照人群社会属性分析,聚类事件过程中的观点,识别关键人物及传播路径,进而可以保护企业、产品的声誉,抓住源头和关键节点,快速有效地处理危机。
第六,企业重点客户筛选。许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。淘店家网店过户认为可以从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。

Ⅶ 大数据背景下特色农产品电子商务发展研究背景是什么

大数据的出现,为特色农产品电子商务推进带来更多的契机。依托数据资源,挖掘数据价值,合理运用数据,可以促进特色农产品电子商务实现进一步发展。通过深入数据分析,引导产销流向,把握市场动向,实现精准营销,加快物流建设,提升配送效率,落实人才保障,提升人才素养等措施,实现农村电商水平更上一层楼。

Ⅷ 大数据成为全新生产要素

大数据成为全新生产要素_数据分析师考试

近日,工信部部长苗圩介绍,工信部将编制实施软件和大数据产业“十三五”发展规划,支持软件企业和工业企业跨界融合、协同创新。业界普遍认为,随着未来“十三五”有关大数据发展规划的出炉,大数据产业将迎来发展新高峰。

李克强总理在今年十二届全国人大三次会议的政府工作报告中首次提出“互联网+”行动计划,“互联网+”战略上升至国家层面。目前,“互联网+”已全面覆盖人们的吃穿住行用,每一个传统行业都孕育着“互联网+”的机会,带来巨大想象空间。在此趋势下,大数据成为新的生产要素。如何挖掘和开发海量数据,通过对大数据的积累和交换、分析与运用,对经济走势产生更为敏锐的洞察和判断,成为行业从业者的制胜要点。

全球最大企业管理软件供应商SAP大中华区总裁纪秉盟(Mark Gibbs)近日在上海接受记者采访时表示,他认为“互联网+”是整个中国范围内一个非常强健的政府主导的项目和倡议。它鼓励人们和企业充分利用移动、大数据和物联网,通过使用这些新兴技术,来帮助中国企业乃至中国整个国家实现自身重大的转型。

在“互联网+”背景下,数据资产将成为各类企业的核心竞争力,更多数据将会长期在线存储。大数据蕴藏着丰富的信息和价值,对许多企业来说,如何运用好大数据,发挥数据资产的商业价值,是大数据时代最核心的挑战。

“阿里巴巴本身是一个数据公司。”在不久前举行的阿里巴巴入股第一财经活动现场,马云表示,数据流通才能发挥价值,只有建构数据分享的机制和产品,提升数据使用效率,才能真正使数据更好地服务于经济和生活,提升各类商业活动的效率和质量。在马云看来,未来五年和十年,“互联网+”的核心思想就是如何把互联网加上传统经济,不管是传统制造业还是传统的各行各业加起来,只有参与传统行业的改造,整个互联网才能活得久、活得好。

据专家介绍,大数据应用起源于互联网,正在向以数据生产、流通和利用为核心的各个产业渗透。目前在国内,包括金融、零售、电信、公共管理、医疗卫生等领域已开始探索和布局“互联网+”以及大数据应用。

以上是小编为大家分享的关于大数据成为全新生产要素的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅸ 大数据的产生与发展现状研究

摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。

关键词 :大数据 物联网 信息处理 海量计算

一、大数据的产生与发展现状

随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基网络则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。

大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。

近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。

二、大数据的特点

目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。

(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。

(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。

(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。

(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。

三、大数据应用的领域

大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。

商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。

大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。

随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。

除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。

四、大数据所面临的挑战

大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:

(1)大数据需要更为专业化的管理技术人才。

(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。

(3)大数据的利用对信息安全提出了更高要求。

(4)大数据的集成与管理问题。

这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。

五、结束语

大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。

参考文献:

[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.

[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.

[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.

阅读全文

与大数据下产相关的资料

热点内容
如何提高自己的网络排名 浏览:571
怎么看凯立德导航版本 浏览:871
更新手机依赖文件失败 浏览:327
数据ltc是什么意思 浏览:568
顺序表存储数据结构有哪些特点 浏览:891
苹果手机在微信怎么搜索文件 浏览:375
数据库服务怎么重启 浏览:841
苹果6s通话声音太小 浏览:517
什么是数据分析法 浏览:659
多页双面文件按顺序复印如何操作 浏览:772
diskgen硬盘工具 浏览:642
后端编程哪个好 浏览:540
编程哪个软件最简单 浏览:591
山西运城疫苗用哪个app预约 浏览:413
有线网络电视机顶盒如何看直播 浏览:909
linux挂载硬盘home 浏览:964
word2010全部接受修订 浏览:802
咋找文件管理中找下载路径 浏览:967
冒险小镇怎么快速升级 浏览:573
如何修改5g手机的5g网络 浏览:486

友情链接